Keywords and phrases: nonlinear PDE, Cauchy problem, elliptic operators, variational methods, Euler equations
Received: October 25, 2024; Accepted: December 13, 2024; Published: January 16, 2025
How to cite this article: I. Ly, T. Dabre and B. Bella, Reasonable conditions for solving nonlinear elliptic Cauchy problems, International Journal of Numerical Methods and Applications 25(1) (2025), 133-150. https://doi.org/10.17654/0975045225006
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References: [1] T. Carleman, Les fonctions quasianalytiques, Gauthier-Villars, Paris, 1926. [2] Lawrence C. Evans, Partial Differential Equations, Graduate Studies in Mathematics 19, American Mathematical Society, Providence, RI, 1998. [3] J. Hadamard, Quelques cas d’impossibilité du problème de Cauchy, In: Memorial N. I. Lobachevsky 2 (1927), 163-176. [4] V. K. Ivanov, A converse potential problem for a body close to a given one, Izv. Akad. Nauk SSSR. Ser. Mat. 20(6) (1956), 793-818. [5] E. M. Landis, On some properties of solutions of elliptic equations, Dokl. Akad. Nauk SSSR 107(5) (1956), 640-643. [6] M. M. Lavrent’ev, On the Cauchy problem for the Laplace equation, Izv. Akad. Nauk SSSR. Ser. Mat. 20 (1956), 819-842. [7] M. M. Lavrent’ev, On the Cauchy problem for linear elliptic equations of the second order, Dokl. Akad. Nauk SSSR 112(2) (1957), 195-197. [8] I. Ly and N. Tarkhanov, A variational approach to the Cauchy problem, J. of Inverse and Ill-Posed Problems 17(6) (2009), 595-610. [9] I. Ly and N. Tarkhanov, The Dirichlet to Neumann operator for nonlinear elliptic equations, Complex analysis and dynamical systems IV. Part 2, General relativity, geometry, and PDE, Contemporary Mathematics 554 (2011), 115-126. [10] V. G. Maz’ya and V. P. Khavin, On solutions of the Cauchy problem for the Laplace equation (uniqueness, normality, approximation), Trudy Mosk. Mat. Obsch. 30 (1974), 61-114. [11] S. N. Mergelyan, Harmonic approximation and an approximate solution of the Cauchy problem for the Laplace equation, Uspekhi Mat. Nauk 11(5) (1956), 3-26. [12] Charles B. Morrey, Multiple Integrals in the Calculus of Variations, Springer-Verlag, Berlin, 1966. [13] D. J. Newman, Numerical method for solution of an elliptic Cauchy problem, J. Math. Phys. 5(1) (1960), 72-75. [14] C. Pucci, Discussione del problema di Cauchy per le equazioni di tipo ellittico, Ann. Mat. Pura Appl. 46 (1958), 131-153. [15] A. Shlapunov, On the Cauchy problem for the Laplace equation, Sibirsk. Mat. Zh. 33(3) (1992), 205-215. [16] N. Tarkhanov, The Cauchy Problem for Solutions of Elliptic Equations, Akademie Verlag, Berlin, 1995. https://api.semanticscholar.org/CorpusID:116973503. [17] G. Zin, Esistenza e reppresentazione di funzioni analitichhe, le quali, su una curva di Jordan, si risucono a una funzione assegnata, Ann. Mat. Pura ed Appl. 34 (1953), 365-405.
|