Keywords and phrases: bioconvection, Carreau non-Newtonian fluid, boundary layer flow, numerical simulation, bvp5c method
Received: October 5, 2024; Revised: November 11, 2024; Accepted: December 15, 2024; Published: December 24, 2024
How to cite this article: C. Sulochana and Geeta Shivapuji, A numerical simulation of heat and mass transfer of bioconvective Carreau non-Newtonian fluid flow past a nonlinear elongating surface, Advances and Applications in Fluid Mechanics 31(2) (2024), 93-116. https://doi.org/10.17654/0973468624005
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License  
References: [1] P. J. Carreau, Rheological equations from molecular network theories, Trans. Soc. Rheol. 16(1) (1972), 99-127. doi: 10.1122/1.549276. [2] R. P. Chhabra and P. H. T. Uhlherr, Experimental Results Creeping motion of spheres through shear-thinning elastie fluids deseribed by the Carreau viscosity equation, 195 (1980), 187-195. [3] R. V. M. S. S. K. Kumar, G. V. Kumar, C. S. K. Raju, S. A. Shehzad and S. V. K. Varma, Analysis of Arrhenius activation energy in magnetohydrodynamic Carreau fluid flow through improved theory of heat diffusion and binary chemical reaction, J. Phys. Commun. 2(3) (2018), p. 035004. doi: 10.1088/2399-6528/aaafff. [4] Mohsan Hassan, Alibek Issakhov, Salah Ud-Din Khan, Mamdouh El Haj Assad, Ehab Hussein Bani Hani, Mohammad Rahimi-Gorji, S. Nadeem and Shahab Ud-Din Khan, The effects of zero and high shear rates viscosities on the transportation of heat and mass in boundary layer regions: A non-Newtonian fluid with Carreau model, J. Mol. Liq. 317 (2020), p. 113991. doi: 10.1016/j.molliq.2020.113991. [5] C. Srinivas Reddy, P. Srihari, F. Ali and K. Naikoti, Numerical analysis of Carreau fluid flow over a vertical porous microchannel with entropy generation, Partial Differ. Equations Appl. Math. 5(2) (2022), p. 100304. doi: 10.1016/j.padiff.2022.100304. [6] F. Shahzad, M. Ashiq, M. Waqas, A. A. Pasha, N. Islam and M. Zubair, Chemically reactive Carreau nanoliquid radiative flow induced by exponentially extending surface capturing variable liquid characteristics: A three-dimensional analysis, Int. Commun. Heat Mass Transf. 140(11) (2023), p. 106313. doi: 10.1016/j.icheatmasstransfer.2022.106313. [7] A. Darvesh, G. C. Altamirano, R. A. S. Núñez, D. O. Gago, R. W. H. Fiestas and T. C. Hernán, Quadratic multiple regression and spectral relaxation approach for inclined magnetized Carreau nanofluid, Eur. Phys. J. Plus. 138(3) (2023), 1-14. doi: 10.1140/epjp/s13360-023-03807-7. [8] John R. Platt, “Bioconvection Patterns” in cultures of free-swimming organisms, Science 133(1961), 1766-1767. DOI:10.1126/science.133.3466.1766. [9] Lei Zhang, V. Puneeth, Muhammad Ijaz Khan, Essam Roshdy El-Zahar, N. Manjunath, Nehad Ali Shah, Jae Dong Chung, Sami Ullah Khan and M. Imran Khan, Applications of bioconvection for tiny particles due to two concentric cylinders when role of Lorentz force is significant, PLoS One 17(5) (2022), 1-13. doi: 10.1371/journal.pone.0265026. [10] M. A. Bees, Advances in Bioconvection, Annu. Rev. Fluid Mech. 52 (2020), 449-476. doi: 10.1146/annurev-fluid-010518-040558. [11] J. O. Kessler and N. A. Hill, The growth of bioconvection patterns in a uniform suspension of gyrotactic micro-organisms, J. Fluid Mech. 195 (1988), 223-237. doi: 10.1017/S0022112088002393. [12] C. S. K. Raju, S. M. Ibrahim, S. Anuradha and P. Priyadharshini, Bio-convection on the nonlinear radiative flow of a Carreau fluid over a moving wedge with suction or injection, Eur. Phys. J. Plus 131(11) (2016), 1-16. doi: 10.1140/epjp/i2016-16409-7. [13] R. M. A. Muntazir, M. Mushtaq and K. Jabeen, A numerical study of MHD Carreau nanofluid flow with gyrotactic microorganisms over a plate, Wedge, and Stagnation Point, Math. Probl. Eng. 2021 (2021), 1-22. doi: 10.1155/2021/5520780. [14] M. Sohail, U. Nazir, Y. M. Chu, W. Al-Kouz and P. Thounthong, Bioconvection phenomenon for the boundary layer flow of magnetohydrodynamic Carreau liquid over a heated disk, Sci. Iran. 28(3) (2021), 1896-1907. doi: 10.24200/SCI.2021.53970.3518. [15] R. Naz, M. Sohail, M. Bibi and M. Javed, Numerical treatment of magnetohydrodynamic Carreau liquid with heat and mass transport containing gyrotactic microorganisms, Sci. Iran 131(6) (2021), 2223-2234. doi: 10.24200/sci.2021.54398.3731. [16] I. S. Ud Din, I. Siddique, R. Ali, F. Jarad, S. Abdal and S. Hussain, On heat and flow characteristics of Carreau nanofluid and tangent hyperbolic nanofluid across a wedge with slip effects and bioconvection, Case Stud. Therm. Eng. 39(8) (2022), p. 102390. doi: 10.1016/j.csite.2022.102390. [17] S. Li, F. Ali, A. Zaib, K. Loganathan, S. M. Eldin and M. Ijaz Khan, Bioconvection effect in the Carreau nanofluid with Cattaneo-Christov heat flux using stagnation point flow in the entropy generation: Micromachines level study, Open Phys. 21(1) (2023), 1-19. doi: 10.1515/phys-2022-0228. [18] P. Kumar, H. Poonia, L. Ali, N. A. Shah and J. D. Chung, Significance of weissenberg number, soret effect and multiple slips on the dynamic of biconvective magnetohydrodynamic Carreau nanofuid flow, Mathematics 11(7) (2023), 1-14. doi: 10.3390/math11071685. [19] V. Pusparaj and P. De, Bioconvection on non-Newtonian magnetohydrodynamics Carreau nanofluid with activation energy and binary chemical reaction in darcy forchhiemer porous medium, J. Nanofluids 12(4) (2023), 978-986. doi: 10.1166/jon.2023.1986. [20] A. M. Megahed, Carreau fluid flow due to nonlinearly stretching sheet with thermal radiation, heat flux, and variable conductivity*, Appl. Math. Mech. (English Ed.), 40(11) (2019), 1615-1624. doi: 10.1007/s10483-019-2534-6. [21] P. Sreenivasulu, T. Poornima, B. Malleswari, N. Bhaskar Reddy and B. Souayeh, Viscous dissipation impact on electrical resistance heating distributed Carreau nanoliquid along stretching sheet with zero mass flux, Eur. Phys. J. Plus 135(705) (2020), 1-25. doi: 10.1140/epjp/s13360-020-00680-6. [22] M. Imran, U. Farooq, T. Muhammad, S. U. Khan and H. Waqas, Bioconvection transport of Carreau nanofluid with magnetic dipole and nonlinear thermal radiation, Case Stud. Therm. Eng. 26(May) (2021), p. 101129. doi: 10.1016/j.csite.2021.101129. [23] Taza Gul, Muhammad Rehman, Anwar Saeed, Imran Khan, Amir Khan, Saleem Nasir and Abdul Bariq, Magnetohydrodynamic impact on Carreau thin film couple stress nanofluid flow over an unsteady stretching sheet, Math. Probl. Eng. 2021(1) (2021), 1-10. doi: 10.1155/2021/8003805. [24] G. Narsimulu, D. Gopal and R. Udaikumar, Numerical approach for enhanced mass transfer of Bio-convection on Magneto-hydrodynamic Carreau fluid flow through a nonlinear stretching surface, Mater. Today Proc. 49 (2021), 2267-2275. doi: 10.1016/j.matpr.2021.09.341. [25] S. Hazarika and S. Ahmed, Brownian motion and thermophoresis behavior on micro-polar nano-fluid-A numerical outlook, Math. Comput. Simul. 192 (2022), 452-463. doi: https://doi.org/10.1016/j.matcom.2021.09.012. [26] S. Hazarika and S. Ahmed, Physical insights on bio-convection in prandtl nanofluid over an inclined stretching sheet in non-darcy medium: numerical simulation, Scientia Iranica (Article in Press). doi: 10.24200/sci.2023.62949.8125. [27] S. Hazarika and S. Ahmed, Steady magnetohydrodynamic micropolar Casson fluid of Brownian motion over a solid sphere with thermophoretic and buoyancy forces: Numerical analysis, J. Nanofluids 9(4) (2020), 336-345. doi: 10.1166/JON.2020.1752. [28] S. Hazarika and S. Ahmed, Material behaviour in micropolar fluid of Brownian motion over a stretchable disk with application of thermophoretic forces and diffusion-thermo, J. Nav. Archit. Mar. Eng. 18(1) (2021), 25-38. doi: 10.3329/jname.v18i1.52518. [29] S. Hazarika, S. Ahmed and A. J. Chamkha, Investigation of nanoparticles Cu, Ag and Fe3O4 on thermophoresis and viscous dissipation of MHD nanofluid over a stretching sheet in a porous regime: A numerical modeling, Math. Comput. Simul. 182 (2021), 819-837. doi: 10.1016/j.matcom.2020.12.005. [30] S. Hazarika, S. Ahmed and A. J. Chamkha, Analysis of platelet shape Al2O3 and TiO2 on heat generative hydromagnetic nanofluids for the base fluid C2H6O2 in a vertical channel of porous medium, Walailak J. Sci. Technol. 18(14) (2021), 1-19. doi: 10.48048/wjst.2021.21424. [31] S. Ahmed and A. J. Chamkha, Hartmann Newtonian radiating MHD flow for a rotating vertical porous channel immersed in a Darcian Porous Regime, Int. J. Numer. Methods Heat Fluid Flow 24(7) (2014), 1454-1470. doi: 10.1108/HFF-04-2013-0113. [32] S. Hussain, S. M. Atif, S. Sagheer and M. A. Manzoor, MHD Carreau nanofluid with Arrhenius activation energy in porous medium, 29(6) (2022), 3591-3602.
|