Keywords and phrases: flow meter, Hall effect sensor, Arduino, rate of flow.
Received: September 8, 2023; Revised: September 21, 2023; Accepted: November 9, 2023; Published: December 4, 2023
How to cite this article: B. Magamai Radj and R. Kamalanathan, Design and analysis of Hall effect sensor and Arduino controlled liquid flow measurement, Advances and Applications in Fluid Mechanics 30(2) (2023), 147-155. http://dx.doi.org/10.17654/0973468623008
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License  
References:
[1] R. Sood, M. Kaur and H. Lenka, Design and development of a automatic water flow meter, International Journal of Computer Science, Engineering and Applications 3(3) (2013), 49-59. [2] A. P. A. More, Automation of fuel measurement and air pressure in the wheel based on IoT technology, Int. J. Res. Appl. Sci. Eng. Technol. 7(6) (2019), 43-48. doi: 10.22214/ijraset.2019.6011. [3] P. Akpan, A CFD simulation of water flow through a venturi meter, Artic. Int. J. Curr. Res. 6(3) (2014), 5425-5431. [Online]. Available: https://www.researchgate.net/publication/266390140. [4] P. H. Vijay, CFD simulation on different geometries of venturimeter, Int. J. Res. Eng. Technol. 3(7) (2014), 456-463. doi: 10.15623/ijret.2014.0307078. [5] N. A. Cloete, R. Malekian and L. Nair, Design of smart sensors for real-time water quality monitoring, IEEE Access 4 (2016), 3975-3990. doi: 10.1109/ACCESS.2016.2592958. [6] P. Megantoro, A. Widjanarko, R. Rahim, K. Kunal and A. Z. Arfianto, The design of digital liquid density meter based on Arduino, J. Robot. Control 1(1) (2020), 1-6. doi: 10.18196/jrc.1101. [7] X. J. Li and P. H. J. Chong, Design and implementation of a self-powered smart water meter, Sensors (Switzerland), 19(19) (2019), 4177. doi: 10.3390/s19194177. [8] H. Rahmiati, The creation of data pattern of kerosene-mixed gasoline by utilizing gas sensor and fast Fourier transform method to detect the purity of gasoline, International Journal of Computer Techniques 5(1) (2018), 44-49. [9] V. Kude and A. Patil, Detection of fuel adulteration in real time using optical fiber sensor and peripheral interface controller, Int. J. Opt. Photonics 11(2) (2017), 95-102. doi: 10.18869/acadpub.ijop.11.2.95. [10] V. Singh, Determination of adulteration and quantity of gasoline fuel using IoT method, National Conference on Communication and Image Processing, 2019. [11] B. T. Rama Krishnan, B. T. Roshan, B. T. Ashfaq Ahmed and B. T. Srinivasan, Digitalized flow quantity and adulteration measurement in petrol, International Journal of Engineering Research & Technology 8(6) (2019), 691-694. [12] G. S. Boudreau, J. A. McAvoy and M. D. Moran, WaterMainia Senior Design Project Report, 2017. [13] M. Simão, M. Besharat, A. Carravetta and H. M. Ramos, Flow velocity distribution towards flowmeter accuracy: CFD, UDV, and field tests, Water (Switzerland) 10(12) (2018), 1807. doi: 10.3390/w10121807. [14] A. T. Pérez and M. Hadfield, Low-cost oil quality sensor based on changes in complex permittivity, Sensors 11(11) (2011), 10675-10690. doi: 10.3390/s111110675. [15] P. S. Daingade, A. S. Patil, D. B. Nikam, R. Mangesh, S. S. Kharade and A. J. More, The quality and quantity testing of gasoline fuel using sensing method, International Research Journal of Engineering and Technology (IRJET) 5 (2018), 2948-2953.
|