Keywords and phrases: magnetohydrodynamics, finite difference approach, stenosis, nanofluid
Received: December 18, 2024; Revised: February 4, 2025; Accepted: February 19, 2025
How to cite this article: Mansi Tyagi and Nurul Amira Zainal, Magneto-nanofluid dynamics in a cosine-shaped stenosed artery: a finite difference approach, JP Journal of Heat and Mass Transfer 38(2) (2025), 253-265. https://doi.org/10.17654/0973576325012
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License  
References: [1] U. T. K. Korkmaz, Cardiovascular diseases and prevention, Surgical Medical Sciences Diagnosis and Treatment 31 (2021), 31-110. [2] M. Puccetti, M. Pariano, A. Schoubben, S. Giovagnoli and M. Ricci, Biologics, theranostics, and personalized medicine in drug delivery systems, Pharmacological Research (2024), 107086. [3] K. Vyas, M. Rathod and M. M. Patel, Insight on nano drug delivery systems with targeted therapy in treatment of oral cancer, Nanomedicine: Nanotechnology, Biology and Medicine 49 (2023), 102662. [4] I. A. Mirza, M. Abdulhameed and S. Shafie, Magnetohydrodynamic approach of non-Newtonian blood flow with magnetic particles in stenosed artery, Applied Mathematics and Mechanics 38 (2017), 379-392. [5] N. Mustapha, N. Amin, S. Chakravarty and P. K. Mandal, Unsteady magnetohydrodynamic blood flow through irregular multi-stenosed arteries, Computers in Biology and Medicine 39 (2009), 896-906. [6] M. Parhizkar, S. Mahalingam, S. Homer-Vanniasinkam and M. Edirisinghe, Latest developments in innovative manufacturing to combine nanotechnology with healthcare, Nanomedicine 13(1) (2018), 5-8. [7] X. F. Zhang, Z. G. Liu, W. Shen and S. Gurunathan, Silver nanoparticles: synthesis, characterization, properties, applications, and therapeutic approaches, International Journal of Molecular Sciences 17 (2016), 1534. [8] D. S. Sankar, J. Goh and A. Mohamed Ismail, FDM analysis for blood flow through stenosed tapered arteries, Boundary Value Problems 2010 (2010), 1-16. [9] Z. H. Zhu, X. Xue and J. Liu, An effective finite difference method for simulation of bioheat transfer in irregular tissues, Journal of Heat Transfer 135 (2013), 071003. [10] K. Iqbal, E. Rossi di Schio, M. A. Anwar, M. Razzaq, H. Shahzad, P. Valdiserri and C. Biserni, A fluid-structure interaction analysis to investigate the influence of magnetic fields on plaque growth in stenotic bifurcated arteries, Dynamics 4(3) (2024), 572-591. [11] A. Hussain, M. N. Riaz Dar, W. Khalid Cheema, R. Kanwal and Y. C. Han, Investigating hybrid nanoparticles for drug delivery in multi-stenosed catheterized arteries under magnetic field effects, Scientific Reports 14(1) (2024), 1170. [12] G. Ramasekhar, J. Shaik, S. R. Reddisekhar Reddy, A. Divya, M. Jawad and B. A. C. Ali Yousif, Numerical investigation of Casson fluid flow performance of blood containing gold and Fe3O4 nanofluid injected into a stenotic artery, Numerical Heat Transfer, Part A: Applications (2024), 1-17. [13] S. D. Jose and A. Selvaraj, Convective heat and mass transfer effects of rotation on parabolic flow past an accelerated isothermal vertical plate in the presence of chemical reaction of first order, JP Journal of Heat and Mass Transfer 24(1) (2021), 191-206. [14] H. Muzara and S. Shateyi, On the numerical analysis of the influence of viscous dissipation and chemical reaction on mixed convection flow of a Jeffrey nanofluid past a stretching plate, JP Journal of Heat and Mass Transfer 38(1) (2025), 1-28. [15] I. Waini, K. B. Hamzah, N. S. Khashi’ie, N. A. Zainal, A. R. M. Kasim, A. Ishak and I. Pop, Stability analysis on Reiner-Phillippoff hybrid nanofluid flow over a wedge, JP Journal of Heat and Mass Transfer 38(1) (2025), 77-94. [16] U. N. Hussein, N. S. Khashi’ie, K. B. Hamzah, N. M. Arifin and I. Pop, Joule heating effect on ternary nanofluid flow and heat transfer over a permeable cylinder, JP Journal of Heat and Mass Transfer 37(6) (2024), 831-841.
|