Keywords and phrases: numerical study, inlet diffusers, thermal storage tank, thermal energy.
Received: October 24, 2024; Accepted: December 7, 2024; Published: April 5, 2025
How to cite this article: Sabah Noori Ahmed, Ahmed Abdulnabi Imran and Nabeel Sameer Mahmoud, Experimental and numerical investigation of novel diffusers for enhanced thermal stratification in tanks, JP Journal of Heat and Mass Transfer 38(2) (2025), 225-251. https://doi.org/10.17654/0973576325011
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License  
References: [1] P. Seferlis, P. S. Varbanov, A. I. Papadopoulos, H. H. Chin and J. J. Klemeš, Sustainable design, integration, and operation for energy high-performance process systems, Energy 224 (2021), 120158. [2] W. Lou, N. Baudin, S. Roux, Y. Fan and L. Luo, Impact of buoyant jet entrainment on the thermocline behavior in a single-medium thermal energy storage tank, Journal of Energy Storage 71 (2023), 108017. [3] G. Alva, Y. Lin and G. Fang, An overview of thermal energy storage systems, Energy 144 (2018), 341-378. [4] U. Pelay, L. Luo, Y. Fan, D. Stitou and M. Rood, Thermal energy storage systems for concentrated solar power plants, Renewable and Sustainable Energy Reviews 79 (2017), 82-100. [5] U. Pelay, L. Luo, Y. Fan, D. Stitou and C. Castelain, Integration of a thermochemical energy storage system in a Rankine cycle driven by concentrating solar power: Energy and exergy analyses, Energy 167 (2019), 498-510. [6] V. SB, S. Bhowmick and B. T. Kuzhiveli, Experimental and numerical investigation of stratification and self pressurization in a high pressure liquid nitrogen storage tank, Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 44(1) (2022), 2580-2594. [7] M. Gómez, J. Collazo, J. Porteiro and J. Míguez, Numerical study of an external device for the improvement of the thermal stratification in hot water storage tanks, Applied Thermal Engineering 144 (2018), 996-1009. [8] Y. Han, R. Wang and Y. Dai, Thermal stratification within the water tank, Renewable and Sustainable Energy Reviews 13(5) (2009), 1014-1026. [9] H. Khurana, R. Majumdar and S. K. Saha, Improved realistic stratification model for estimating thermocline thickness in vertical thermal energy storage undergoing simultaneous charging and discharging, Journal of Energy Storage 82 (2024), 110490. [10] H. Khurana, R. Majumdar and S. K. Saha, Experimental investigation of heat dispatch controllability through simultaneous charging-discharging and stand-alone discharging operations in vertical cylindrical sensible heat storage tank, Journal of Energy Storage 54 (2022), 105268. [11] C. Zhu et al., Study on thermal performance of single-tank thermal energy storage system with thermocline in solar thermal utilization, Applied Sciences 12(8) (2022), 3908. [12] P. Trinuruk, P. Jenyongsak and S. Wongwises, Comparative study of inlet structure and obstacle plate designs affecting the temperature stratification characteristics, Energies 15(6) (2022), 2032. [13] A. Samet, M. Ben Souf, T. Fakhfakh and M. Haddar, Numerical investigation of the baffle plates effect on the solar water storage tank efficiency, Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 42(16) (2020), 2034 2048. [14] A. Jamil and A. Benbassou, Review on solar thermal stratified storage tanks (STSST): Insight on stratification studies and efficiency indicators, Solar Energy 176 (2018), 126-145. [15] M. T. Bouzaher, N. Bouchahm, B. Guerira, C.-E. Bensaci and M. Lebbi, On the thermal stratification inside a spherical water storage tank during dynamic mode, Applied Thermal Engineering 159 (2019), 113821. [16] S. Ievers and W. Lin, Numerical simulation of three-dimensional flow dynamics in a hot water storage tank, Applied Energy 86(12) (2009), 2604-2614. [17] P. Dzierwa, J. Taler, P. Peret, D. Taler and M. Trojan, Transient CFD simulation of charging hot water tank, Energy 239 (2022), 122241. [18] B. Kurşun, Thermal stratification enhancement in cylindrical and rectangular hot water tanks with truncated cone and pyramid shaped insulation geometry, Solar Energy 169 (2018), 512-525. [19] R. M. Dickinson, C. A. Cruickshank and S. J. Harrison, Charge and discharge strategies for a multi-tank thermal energy storage, Applied Energy 109 (2013), 366-373. [20] A. Mawire, Parametric study on the thermal gradient of a small stratified domestic oil storage tank, 2016 International Conference on the Domestic use of Energy (DUE), IEEE, 2016, pp. 1-5. [21] E. S. ELSihy, X. Wang, C. Xu and X. Du, Investigation on simultaneous charging and discharging process of water thermocline storage tank employed in combined heat and power units, Journal of Energy Resources Technology 143(3) (2021), 032001. [22] H. A. Dhahad, W. H. Alaweea and L. J. Habeeb, Numerical investigation for the discharging process in cold-water storage tank, J. Mech. Eng. Res. Dev. 43 (2020), 295-306. [23] Y. P. Chandra and T. Matuska, Numerical prediction of the stratification performance in domestic hot water storage tanks, Renewable Energy 154 (2020), 1165-1179. [24] K. Kumar and S. Singh, Investigating thermal stratification in a vertical hot water storage tank under multiple transient operations, Energy Reports 7 (2021), 7186-7199. [25] Y. Deng, D. Sun, M. Niu, B. Yu and R. Bian, Performance assessment of a novel diffuser for stratified thermal energy storage tanks-The nonequal-diameter radial diffuser, Journal of Energy Storage 35 (2021), 102276. [26] A. Musser and W. P. Bahnfleth, Evolution of temperature distributions in a full-scale stratified chilled-water storage tank with radial diffusers, ASHRAE Transactions 104 (1998), 55. [27] F. Hassan and M. Theeb, Effect of diffuser height on thermocline in stratified chilled water storage tank, Journal of Applied Fluid Mechanics 14(2) (2020), 429-438. [28] J. Fernandez-Seara, F. J. Uhı and J. Sieres, Experimental analysis of a domestic electric hot water storage tank, Part II: dynamic mode of operation, Applied Thermal Engineering 27(1) (2007), 137-144. [29] H. K. Versteeg and W. Malalasekera, An Introduction to Computational Fluid Dynamics: The Finite Volume Method, Pearson Education, 2007. [30] Y. Qian and S. Orszag, Lattice BGK models for the Navier-Stokes equation: Nonlinear deviation in compressible regimes, Europhysics Letters 21(3) (1993), 255. [31] A. CFX-Solver, Theory guide, Release ll, 2006. [32] Z. Shi, J. Chen and Q. Chen, On the turbulence models and turbulent Schmidt number in simulating stratified flows, Journal of Building Performance Simulation 9(2) (2016), 134-148. [33] A. Elatar, K. Nawaz, B. Shen, V. Baxter and O. Abdelaziz, Characterization of wrapped coil tank water heater during charging/discharging, ASME International Mechanical Engineering Congress and Exposition, American Society of Mechanical Engineers, 58424, 2017, V007T09A019. [34] D. L. Savicki, H. A. Vielmo and A. Krenzinger, Three-dimensional analysis and investigation of the thermal and hydrodynamic behaviors of cylindrical storage tanks, Renewable Energy 36(5) (2011), 1364-1373.
|