Keywords and phrases: fractional order derivatives, disc, stress distributions, heating and cooling process, integral transform.
Received: June 10, 2024; Revised: January 4, 2025, Accepted: January 18, 2025; Published: April 5, 2025
How to cite this article: Yogesh Panke and Dilip B. Kamdi, Evaluation of thermal effects in an annular disc using the Caputo-Fabrizio fractional derivative approach in heating and cooling conditions, JP Journal of Heat and Mass Transfer 38(2) (2025), 203-224. https://doi.org/10.17654/0973576325010
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License  
References:
[1] A. H. Elsheikh, J. Guo and K.-M. Lee, Thermal deflection and thermal stresses in a thin circular plate under an axisymmetric heat source, J. Therm. Stress. 42 (2019), 361-373. https://doi.org/10.1080/01495739.2018.1482807. [2] M. R. Eslami, Thermal stresses in plates, in: M.R. Eslami (Ed.), Therm. Stress. Plates Shells, Springer Nature Switzerland, Cham, 2024, pp. 43-143. https://doi.org/10.1007/978-3-031-49915-9_3. [3] M. Ishihara, Y. Tanigawa, R. Kawamura and N. Noda, Theoretical analysis of thermoelastoplastic deformation of a circular plate due to a partially distributed heat supply, J. Therm. Stress. 20 (1997), 203-225. https://doi.org/10.1080/01495739708956099. [4] K. R. Gaikwad, Analysis of thermoelastic deformation of a thin hollow circular disk due to partially distributed heat supply, J. Therm. Stress. 36 (2013), 207-224. https://doi.org/10.1080/01495739.2013.765168. [5] N. L. Khobragade and K. C. Deshmukh, Thermal deformation in a thin circular plate due to a partially distributed heat supply, Sadhana 30 (2005), 555-563. https://doi.org/10.1007/BF02703279. [6] Y. Tanigawa, Y. Ootao and R. Kawamura, Thermal bending of laminated composite rectangular plates and nonhomogeneous plates due to partial heating, J. Therm. Stress. 14 (1991), 285-308. https://doi.org/10.1080/01495739108927069. [7] Y. Zhou, X. Li and D. Yu, A partially insulated interface crack between a graded orthotropic coating and a homogeneous orthotropic substrate under heat flux supply, Int. J. Solids Struct. 47 (2010), 768-778. https://doi.org/10.1016/j.ijsolstr.2009.11.009. [8] Y. O. Tanigawa Yoshinobu, Three-dimensional transient thermal stresses of functionally graded rectangular plate due to partial heating, J. Therm. Stress. 22 (1999), 35-55. https://doi.org/10.1080/014957399281048. [9] H. L. Zhang, S. Kim, G. Choi, D. M. Xie and H. H. Cho, Analysis of thermoelastic problems in isotropic solids undergoing large temperature changes based on novel models of thermoelasticity, Int. J. Heat Mass Transf. 177 (2021), 121576. https://doi.org/10.1016/j.ijheatmasstransfer.2021.121576. [10] M. Caputo and M. Fabrizio, A new definition of fractional derivative without singular kernel, Prog. Fract. Differ. Appl. 1 (2015), 73-85. [11] S. Abbas, M. Benchohra, J. J. Nieto, S. Abbas, M. Benchohra and J. J. Nieto, Caputo-Fabrizio fractional differential equations with instantaneous impulses, AIMS Math. 6 (2021), 2932-2946. https://doi.org/10.3934/math.2021177. [12] S. Alizadeh, D. Baleanu and S. Rezapour, Analyzing transient response of the parallel RCL circuit by using the Caputo-Fabrizio fractional derivative, Adv. Differ. Equ. 2020 (2020), 1-19. https://doi.org/10.1186/s13662-020-2527-0. [13] D. Baleanu, H. Mohammadi and S. Rezapour, A fractional differential equation model for the COVID-19 transmission by using the Caputo-Fabrizio derivative, Adv. Differ. Equ. 2020 (2020), 299. https://doi.org/10.1186/s13662-020-02762-2. [14] H. Li, J. Cheng, H.-B. Li and S.-M. Zhong, Stability analysis of a fractional-order linear system described by the Caputo-Fabrizio derivative, Mathematics 7 (2019), 200. https://doi.org/10.3390/math7020200. [15] J. Losada and J. J. Nieto, Properties of a new fractional derivative without singular kernel, Prog. Fract. Differ. Appl. 1 (2015), 87-92. [16] A. Sur and S. Mondal, The Caputo-Fabrizio heat transport law in vibration analysis of a microscale beam induced by laser, ZAMM - J. Appl. Math. Mech. Z. Für Angew. Math. Mech. 101 (2021), e202000215. https://doi.org/10.1002/zamm.202000215. [17] S. Kumar, S. Das and S. H. Ong, Analysis of tumor cells in the absence and presence of chemotherapeutic treatment: the case of Caputo-Fabrizio time fractional derivative, Math. Comput. Simul. 190 (2021), 1-14. https://doi.org/10.1016/j.matcom.2021.05.007. [18] O. J. J. Algahtani, Comparing the Atangana-Baleanu and Caputo-Fabrizio derivative with fractional order: Allen Cahn model, Chaos Solitons Fractals 89 (2016), 552-559. https://doi.org/10.1016/j.chaos.2016.03.026. [19] E. F. D. Goufo, Application of the Caputo-Fabrizio fractional derivative without singular kernel to Korteweg-de Vries-Burgers equation, Math. Model. Anal. 21 (2016), 188-198. https://doi.org/10.3846/13926292.2016.1145607. [20] T. M. Atanacković, S. Pilipović and D. Zorica, Properties of the Caputo-Fabrizio fractional derivative and its distributional settings, Fract. Calc. Appl. Anal. 21 (2018), 29-44. https://doi.org/10.1515/fca-2018-0003. [21] M. Al-Refai and A. M. Jarrah, Fundamental results on weighted Caputo-Fabrizio fractional derivative, Chaos Solitons Fractals 126 (2019), 7-11. https://doi.org/10.1016/j.chaos.2019.05.035. [22] A. Atangana and E. F. D. Goufo, The Caputo-Fabrizio fractional derivative applied to a singular perturbation problem, Int. J. Math. Model. Numer. Optim. 9 (2019), 241-253. https://doi.org/10.1504/IJMMNO.2019.100486. [23] S. Qureshi, N. A. Rangaig and D. Baleanu, New numerical aspects of Caputo-Fabrizio fractional derivative operator, Mathematics 7 (2019), 374. https://doi.org/10.3390/math7040374. [24] S. Ullah, M. A. Khan, M. Farooq, Z. Hammouch and D. Baleanu, A fractional model for the dynamics of tuberculosis infection using Caputo-Fabrizio derivative, Discrete and Continuous Dynamical Systems - Series S (DCDS-S) 13 (2020), 975-993. http://earsiv.cankaya.edu.tr:8080/xmlui/handle/20.500.12416/3489. [25] D. Baleanu, A. Jajarmi, H. Mohammadi and S. Rezapour, A new study on the mathematical modelling of human liver with Caputo-Fabrizio fractional derivative, Chaos Solitons Fractals 134 (2020), 109705. https://doi.org/10.1016/j.chaos.2020.109705. [26] F. E.-G. Bouzenna, M. T. Meftah and M. Difallah, Application of the Caputo-Fabrizio derivative without singular kernel to fractional Schrödinger equations, Pramana 94 (2020), 92. https://doi.org/10.1007/s12043-020-01968-z. [27] A. E. Abouelregal, A. H. Sofiyev, H. M. Sedighi and M. A. Fahmy, Generalized heat equation with the Caputo-Fabrizio fractional derivative for a nonsimple thermoelastic cylinder with temperature-dependent properties, Phys. Mesomech. 26 (2023), 224-240. https://doi.org/10.1134/S1029959923020108. [28] N. K. Lamba, Impact of memory-dependent response of a thermoelastic thick solid cylinder, J. Appl. Comput. Mech. 9 (2023), 1135-1143. https://doi.org/10.22055/jacm.2023.43952.4149. [29] N. K. Lamba, Thermosensitive response of a functionally graded cylinder with fractional order derivative, Int. J. Appl. Mech. Eng. 27 (2022), 107-124. https://doi.org/10.2478/ijame-2022-0008. [30] N. K. Lamba and K. C. Deshmukh, Hygrothermoelastic response of a finite solid circular cylinder, Multidiscip. Model. Mater. Struct. 16 (2019), 37-52. https://doi.org/10.1108/MMMS-12-2018-0207. [31] N. Lamba, J. Verma and K. Deshmukh, (R2028) A brief note on space time fractional order thermoelastic response in a layer, Appl. Appl. Math. Int. J. AAM 18 (2023), 1-9. https://digitalcommons.pvamu.edu/aam/vol18/iss1/18. [32] N. K. Lamba, K. C. Deshmukh, Memory dependent response in an infinitely long thermoelastic solid circular cylinder, PNRPU Mech. Bull. (2024), 5-12. https://doi.org/10.15593/perm.mech/2024.1.01. [33] V. R. Manthena, V. B. Srinivas, N. K. Lamba and G. D. Kedar, Fractional thermal response in a thermosensitive rectangular plate due to the action of a moving source of heat, Adv. Differ. Equ. Control Process. 31 (2024), 397-415. https://doi.org/10.17654/0974324324022. [34] V. Manthena, N. Lamba and G. Kedar, Thermal stress analysis in a functionally graded hollow elliptic-cylinder subjected to uniform temperature distribution, Appl. Appl. Math. Int. J. AAM 12 (2017), 613-632. https://digitalcommons.pvamu.edu/aam/vol12/iss1/40. [35] I. A. Abbas, Generalized thermoelastic interaction in functional graded material with fractional order three-phase lag heat transfer, J. Cent. South Univ. 22 (2015), 1606-1613. https://doi.org/10.1007/s11771-015-2677-5. [36] S. Khajanchi, M. Sardar and J. J. Nieto, Application of non-singular kernel in a tumor model with strong Allee effect, Differ. Equ. Dyn. Syst. 31 (2023), 687-692. https://doi.org/10.1007/s12591-022-00622-x. [37] M. Jornet and J. J. Nieto, Properties of a new generalized Caputo-Fabrizio fractional derivative, J. Appl. Anal. Comput. 14 (2024), 3520-3538. https://doi.org/10.11948/20240079.
|