Keywords and phrases: beam equation, semigroup theory, asymptotic analysis, Riesz basis, exponential stability.
Received: November 5, 2024; Accepted: December 13, 2024; Published: February 28, 2025
How to cite this article: Kouassi Ayo Ayébié Hermith, Diop Fatou N., Yapi Serge Alain Joresse and Touré K. Augustin, Stability of variable coefficients Rayleigh beams with indefinite damping under a force control, Far East Journal of Dynamical Systems 38(1) (2025), 127-157. https://doi.org/10.17654/0972111825006
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License  
References: [1] T. K. Augustin, C. Adama, K. A. A. Hermith and A. J. Kablan, Exponential stability of variable coefficients Rayleigh beams with indefinite damping under a force control in moment and velocity, Far East J. Math. Sci. (FJMS) 99(7) (2016), 993-1020. [2] G. D. Birkhoff, On the asymptotic character of the solutions of certain linear differential equations containing a parameter, Trans. Amer. Math. Soc. 9 (1908), 219-231. [3] G. D. Birkhoff, Boundary value and expansion problems of ordinary linear differential equations, Trans. Amer. Math. Soc. 9 (1908), 373-395. [4] I. Gohberg, Classes of Linear Operators, Vol. I, Birkhäuser Verlag, Basel-Boston-Berlin, 1990. [5] R. F. Curtain and H. J. Zwart, An Introduction to Infinite Dimensional Linear System Theory, Springer-Verlag, New York, 1995. [6] B. Z. Guo, Basis property of a Rayleigh beam with boundary stabilization, J. Optim. Theory. Appl. 112(3) (2002), 529-547. [7] B. Z. Guo, Riesz basis property and exponential stability of controlled Euler-Bernoulli beam equation with variable coefficients, SIAM J. Control Optim. 40(6) (2002), 1905-1923. [8] B. Z. Guo, J. M. Wang and S. P. Yung, Boundary stabilization of a flexible manipulator with rotational inertia, Differential Integral Equations 18(9) (2005), 1013-1038. [9] V. Komornik, Exact Controllability and Stabilization (the Multiplier Method), Masson, Wiley, Paris, 1995. [10] B. R. Li, The perturbation theory of a class of linear operators with applications, Acta. Math. Sin. (Chinese) 21 (1978), 206-222. [11] M. A. Naimark, Linear Differential Operators, New York, Ugar., Vol. 1, 1967. [12] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983. [13] A. A. Shkalikov, Boundary value problems for ordinary differential equations with a parameter in the boundary conditions, J. Sov. Math. 33 (1986), 1311-1342. [14] C. Tretter, On -nonlinear boundary eigenvalue problem, Mathematical Research, Berlin, Akademie, Vol. 71, 1993. [15] A. A. Shkalikov and C. Tretter, Kamke problems, Properties of the eigenfunctions, Math. Nachr. 170 (1994), 251-275. [16] C. Tretter, On fundamental systems for differential equations of Kamke type, Math Z. 219 (1995), 609-629. [17] J. M. Wang, Riesz basis property of some infinite-dimensional control problems and its applications, Ph. D. Thesis, The University of Hong Kong, 2004. [18] J. M. Wang, G. Q. Xu and S. P. Yung, Exponential stability of variable coefficients Rayleigh beams under boundary feedback control: a Riesz basis approach, Syst. Control Lett. 51 (2004), 33-50. [19] J. M. Wang, G. Q. Xu and S. P. Yung, Riesz basis property, exponential stability of variable coefficient Euler-Bernoulli beams with indefinite damping, IMA J. Appl. Math. 70 (2005), 459-477. [20] J. M. Wang, G. Q Xu and S. P. Yung, Exponential stabilization of laminated beams with structural damping and boundary feedback controls, SIAM J. Control Optim. 44(5) (2005), 1575-1597. [21] J. M. Wang and S. P. Yung, Stability of a nonuniform Rayleigh beam with indefinite damping, System and Control Letters 55 (2006), 863-870. [22] B. P. Rao, Optimal energy decay rate in a damping Rayleigh beam, optimization methods in partial differential equations, Contemp. Math. 209 (1997), 211-229. [23] R. F. Curtain and H. J. Zwart, An Introduction to Infinite Dimensional Linear System Theory, Springer, New York, 1995. [24] D. L. Russell, Mathematical models for the elastic beam and their control theoretic implications, Semigroups, Theory and Applications, H. Brezis, M. G. Crandell and F. Kapell, eds., Vol. II, Longman Scientific and Technical, Harlow, 1986, pp. 177-216. [25] S. Cox and E. Zuazua, The rate at which energy decays in a damping string, Comm. Partial Differential Equations 19 (1994), 213-243. [26] P. Freitas and E. Zuazua, Stability results for the wave equation with indefinite damping, J. Differential Equations 132 (1996), 338-352. [27] K. Liu, Z. Liu and B. Rao, Exponential stability of an abstract non-dissipative linear system, SIAM J. Control Optim. 40 (2001), 149-165. [28] Z. H. Luo, B. Z. Guo and O. Morgül, Stability and Stabilization of Infinite Dimensional Systems with Applications, Springer-Verlag, London, 1999. [29] F. L. Huang, Characteristic condition for exponential stability of linear dynamical systems in Hilbert spaces, Ann. Differential Equations 1 (1985), 43-56. [30] M. Renardy, On the type of certain -semigroups, Comm. Partial Differential Equations 18 (1993), 1299-1307. [31] G. Q. Xu and D. X. Feng, On the spectrum determined growth assumption and the perturbation of -semigroups, Integral Equations Operator Theory 39(3) (2001), 363-376. [32] Touré K. Augustin, Coulibaly Adama and Kouassi Ayo. A. Hermith, Riesz basis, exponential stability of variable coefficients Euler-Bernoulli beams under a force control in position and velocity, Far East J. Appl. Math. 88(3) (2014), 193-220. [33] K. Augustin Touré, Adama Coulibaly and Ayo A. Hermith Kouassi, Riesz basis, exponential stability of variable coefficients Euler-Bernoulli beams and indefinite damping under a force control in position and velocity, Electron. J. Differential Equations 2015(54) (2015), 1-20. [34] H. Tanabe, Equations of Evolution, Pitman, London, 1979.
|