Keywords and phrases: Hamiltonian system, symplectic matrix, perturbations, strong stability
Received: November 22, 2024; Accepted: December 30, 2024; Published: February 12, 2025
How to cite this article: Traoré G. Y. AROUNA, Famane KAMBIRE and Sylvestre P. EKRA, Perturbation analysis of symplectic matrix, International Journal of Numerical Methods and Applications 25(1) (2025), 187-209. https://doi.org/10.17654/0975045225008
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License  
References: [1] Traoré G. Y. Arouna, M. Dosso and J. C. Koua Brou, On a perturbation theory of Hamiltonian systems with periodic coefficients, International Journal of Numerical Methods and Applications 17(2) (2018), 47-89. [2] L. Batzke, C. Mehl, A. C. Ran and L. Rodman, Generic rank-k perturbations of structured matrices, Operator Theory, Function Spaces and Applications, Birkhäuser, Cham, 2016, pp. 27-48. [3] C. Brezinski, Computational Aspects of Linear Control, Kluwer Academic Publishers, 2002. [4] M. Dosso, Sur quelques algorithms d’analyse de stabilité forte de matrices symplectiques, PHD Thesis, Université de Bretagne Occidentale, Ecole Doctorale SMIS, Laboratoire de Mathématiques, UFR Sciences et Techniques, 2006. [5] M. Dosso, Traoré G. Y. Arouna and J. C. Koua Brou, On rank one perturbation of Hamiltonian system with periodic coefficients, WSEAS Translations on Mathematics 15 (2016), 502-510. [6] M. Dosso and M. Sadkane, On the strong stability of symplectic matrices, Numer. Linear Algebra Appl. 20(2) (2013), 234-249. [7] M. Dosso and N. Coulibaly, Symplectic matrices and strong stability of Hamiltonian systems with periodic coefficients, Journal of Mathematical Sciences: Advances and Applications 28 (2014), 15-38. [8] G. Freiling, V. Mehrmann and H. Xu, Existence, uniqueness and parametrization of Lagrangian invariant subspaces, SIAM J. Matrix Anal. Appl. 23(4) (2002), 1045-1069. [9] I. M. Glazman, Finite-dimensional Linear Analysis: A Systematic Presentation in Problem Form, Courier Corporation, 2006. [10] Kh. Ikramov, On the calculation of neutral subspaces of a matrix, Moscow University Computational Mathematics and Cybernetics 41(1) (2017), 11-13. [11] F. Poloni and N. Strabić, Principal pivot transforms of quasi definite matrix and semidefinite Lagrangian subspaces, Journal of Linear Algebra 31 (2016), 200-231. [12] V. A. Yakubovich and V. M. Starzhinskii, Linear Differential Equations with Periodic Coefficients, Vols. 1 and 2, Wiley, New York, 1975.
|