Keywords and phrases: free boundary problem, heterogeneous medium, traveling wave solution, system of parabolic/Hamilton-Jacobi equations, numerical resolution, finite element.
Received: November 6, 2024; Revised: December 20, 2024; Accepted: December 25, 2024; Published: January 20, 2025
How to cite this article: Mohamed KARIMOU GAZIBO and Aboubacar ABDOU, Numerical resolution of a free boundary problem in a heterogeneous medium, International Journal of Numerical Methods and Applications 25(1) (2025), 151-186. https://doi.org/10.17654/0975045225007
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References: [1] H. W. Alt and S. Luckhaus, Quasilinear elliptic-parabolic differential equations, Math. Z. 183(3) (1983), 311-341. [2] X. Chen and G. S. Namah, Wave propagation under curvature effects in a heterogeneous medium, Applicable Analysis 64(3-4) (1997), 219-233. [3] C. M. Brauner, G. S. Namah and C. Schmidt-Lainé, Propagation of a combustion front in a striated solid medium: a homogenization analysis, Quarterly of Appl. Math. LI(3) (1993), 467-493. [4] M. G. Crandall, L. C. Evans and P. L. Lions, Some properties of viscosity solutions of Hamilton-Jacobi Equations, Trans. Amer. Math. Soc. 282 (1984), 487-502. [5] M. Gazibo Karimou, Etudes mathématiques et numériques des problèmes paraboliques avec des conditions aux limites, Thèse de Doctorat Besançon, 2013. [6] Mohamed KARIMOU GAZIBO and Aboubacar ABDOU, Asymptotic behavior of a front propagation model: case of a one-dimensional free boundary problem, International Journal of Numerical Methods and Applications 25(1) (2025), 63-85. https://doi.org/10.17654/0975045225003. [7] J. L. Lions, Quelques méthodes de résolution des problémes aux limites non linéaires, Dunod, Paris, 1969. [8] G. S. Namah, Propagation d’un front dans un milieu hétérogène: Comportement en temps long et homogénéisation, Application à la combustion du propergols solides, Thèse-HDR Bordeaux I, 1997. [9] G. S. Namah, Asymptotic solution of a Hamilton-Jacobi equation, Asym. Anal. 12 (1996), 355-370. [10] G. S. Namah and N. Alibaud, On the propagation of periodic flame front by Arrhenius kinetic, Interfaces and Free Boundaries 19 (2017), 449-491. [11] S. Osher and J. A. Sethian, Front propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulation, Journal of Comp. Physics 79(1) (1988), 12-48.
|