Keywords and phrases: reaction diffusion equation, quenching solution, conformable fractional derivatives (CFD), conformable Euler method (CEM), modified conformable Euler method (MCEM), perturbation method, analytical solution, homotopy perturbation method, convergence, numerical quenching time, extinction, existence, finite difference method, Maple, MATLAB-Simulink.
Received: May 31, 2024; Revised: June 14, 2024; Accepted: November 28, 2024; Published: January 6, 2025
How to cite this article: Kambire D. Gnowille, HALIMA NACHID and ALI S. SAMUEL FARMA, The perturbed numerical process for a reaction-diffusion problem with conformable derivative, International Journal of Numerical Methods and Applications 25(1) (2025), 103-132. https://doi.org/10.17654/0975045225005
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References: [1] L. M. Abia, J. C. López-Marcos and J. Martinez, On the blow-up time convergence of semidiscretizations of reaction-diffusion equations, Appl. Numer. Math. 26(4) (1998), 399-414. https://doi.org/10.1016/S0168-9274(97)00105-0. [2] R. Agarwal, S. Jain and R. P. Agarwal, Solution of fractional Volterra integral equation and non-homogeneous time fractional heat equation using integral transform of pathway type, Progress in Fractional Differentiation and Applications 1 (2015), 145-155. [3] M. Caputo, Linear models of dissipation whose Q is almost frequency independent II, Geophysical Journal International 13 (1967), 529-539. https://doi.org/10.1111/j.1365-246X.1967.tb02303. [4] D. P. Clemence-Mkhope and B. G. B. Clemence-Mkhope, The limited validity of the conformable Euler finite difference method and an alternate definition of the conformable fractional derivative to justify modification of the method, Math. Comput. Appl. 26 (2021), 1-11. https://doi.org/10.3390/mca26040066. [5] A. Elsaid, Homotopy analysis method for solving a class of fractional partial differential equations, Commun. Nonlinear Sci. Numer. Simul. 16 (2011), 3655-3664. https://doi.org/10.1016/j.cnsns.2010.12.040. [6] R. Gorenflo, F. Mainardi and I. Podlubny, Fractional Differential Equations, Academic Press, Cambridge, 1999, pp. 683-699. [7] J. Guo, On a quenching problem with Robin boundary condition, Nonlinear Anal. 17 (1991), 803-809. DOI : https://doi.org/10.1016/0362-546X(91)90154-S. [8] B. I. Henry and S. L. Wearne, Fractional reaction-diffusion, Gen. Math. 276(3-4) (2000), 448-455. DOI : https://doi.org/10.1016/S0378-4371(99)00469-0. [9] F. Huang and F. Liu, The time-fractional diffusion equation and fractional advection-dispersion equation, ANZIAM J. 46(3) (2005), 317-330. DOI : https://doi.org/10.1017/S1446181100008282. [10] R. Khalil, M. Al Horani, A. Yousef and M. Sababheh, A new definition of fractional derivative, J. Comput. Appl. Math. 264 (2014), 65-70. [11] T.-D. Lee, R. Oehme and C.-N. Yang, Remarks on possible non-invariance under time reversal and charge conjugation, Physical Review 106(2) (1957), 340-345. https://doi.org/10.1103/PhysRev. [12] Y. Luchko and R. Gorneflo, The initial value problem for some fractional differential equations with the Caputo derivative, Preprint series A08-98, Fachbreich Mathematik und Informatik, Freic Universitat Berlin, 1998. [13] F. Mainardi, Fractional calculus, Fractals and Fractional Calculus in Continuum Mechanics, Springer, Berlin, 1997, pp. 291-348. https://doi.org/10.1007/978-3-7091-2664-6-7. [14] V. Mohammadnezhad, M. Eslami and H. Rezazadeh, Stability analysis of linear conformable fractional differential equations system with time delays, Boletim da Sociedade Paranaense de Matematica 38 (2020), 159-171. [15] S. Momani, An explicit and numerical solutions of the fractional KdV equation, Math. Comput. Simul. 70(2) (2005), 110-118. https://doi.org/10.1016/j.matcom.2005.05.001. [16] Halima Nachid, F. N’Gohisse and N’Guessan Koffi, The phenomenon of quenching for a reaction-diffusion system with non-linear boundary conditions, J. Indian Math. Soc. (N.S.) 88(1-2) (2021), 155-175. [17] M. Ishteva, Properties and Applications of the Caputo Fractional Operator, Department of Mathematics, University of Karlsruhe, Karlsruhe, 2005. [18] Burhan Selçuk, Quenching behavior of a semilinear reaction-diffusion system with singular boundary condition, Turkish J. Math. 40(15) (2016), 166-180. https://doi.org/10.3906/mat-1502-20. [19] D. Yekre Benjamn, Yoro Gozo, Diopina Kambere and Halima Nachid, Perturbed quenching phenomenon for a conformable fractional order reaction diffusion equation, Universal Journal of Mathematics and Mathematical Sciences 19(1) (2023), 61-85. [20] A.-M. Wazwaz, Linear and Nonlinear Integral Equations, Springer, Berlin, 2011. https://doi.org/10.1007/978-3-642-21449-3.
|