Keywords and phrases: free boundary problem, heat equation, traveling wave solution, Laplace transform, asymptotic behavior.
Received: November 6, 2024; Revised: December 4, 2024; Accepted: December 14, 2024; Published: December 19, 2024
How to cite this article: Mohamed KARIMOU GAZIBO and Aboubacar ABDOU, Asymptotic behavior of a front propagation model: case of a one-dimensional free boundary problem, International Journal of Numerical Methods and Applications 25(1) (2025), 63-85. https://doi.org/10.17654/0975045225003
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References: [1] G. Namah, Asymptotic solution of a Hamilton-Jacobi equation, Asymptotic Anal. 12(4) (1996), 355-370. [2] G. Namah, Propagation d’un front dans un milieu hétérogène: comportement en temps long et homogénéisation, Application à la combustion du propergols solides, Thèse-HDR Bordeaux I, 1997. [3] S. Osher and J. A. Sethian, Front propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulation, J. Comput. Phys. 79(1) (1988), 12-48. [4] C. M. Brauner, P. C. Fife, G. Namah and C. Schmidt-Lainé, Propagation of a combustion front in a striated solid medium: a homogenization analysis, Quart. Appl. Math. 51(3) (1993), 467-493. [5] N. Alibaud and G. Namah, On the propagation of periodic flame front by Arrhenius kinetic, Interfaces and Free Boundaries 19 (2017), 449-491. [6] M. Gazibo Karimou, Etudes mathématiques et numériques des problèmes paraboliques avec des conditions aux limites, Thèse de Doctorat Besançon, 2013. [7] D. A. Tarzia, Determination of the unknown coefficients in the Lamé-Clapeyron problem (or one-phase Stefan problem), Adv. in Appl. Math. 3 (1982), 74-82. [8] O. A. Ladyženskaja, V. A. Solonnikov and N. N. Ural’ceva, Linear and quasi-linear equations of parabolic type, Translated from the Russian by S. Smith, Translations of Mathematical Monographs, Vol. 23, American Mathematical Society, Providence, R.I., 1968. [9] J. L. Lions, Quelques méthodes de résolution des problémes aux limites non linéaires, Dunod, Gauthier-Villars, Paris, 1969 (in French). [10] X. Chen and G. Namah, Wave propagation under curvature effects in a heterogeneous medium, Appl. Anal. 64(3-4) (1997), 219-233. [11] M. G. Crandall and P. L. Lions, Viscosity solutions of Hamilton-Jacobi equations, Trans. Amer. Math. Soc. 277(1) (1983), 1-42.
|