NONLINEAR ION-ACOUSTIC SOLITARY WAVES IN A DUSTY AND WEAKLY RELATIVISTIC ELECTRON-POSITRON-ION PLASMA WITH RELATIVISTIC POSITRON BEAM
The Korteweg-de Vries (KdV) equation is derived in order to investigate the existence of compressive solitons for weakly relativistic nonlinear ion-acoustic waves in an unmagnetized dusty plasma with electron inertia and relativistic positron beam. The presence of electron inertia and pressure variation has been found to cause distinct variations in the amplitude and width of compressive solitons. The investigation figures out certain specific conditions for the nonlinear ion-acoustic solitons to exist. The analysis is based on the fluid equations of motion that control the one-dimensional, collision-less warm dusty plasma. For stretching the space and time variables, different relational forms of the strength parameter are selected, resulting in various kinds of nonlinearities. Interstellar space plasma researchers and astronomers can benefit from the findings of this paper.
solitary wave, relativistic plasma, KdV equation, dusty plasma, electron inertia.
Received: April 12, 2024; Accepted: June 6, 2024; Published: June 19, 2024
How to cite this article: Satyendra Nath Barman and Kingkar Talukdar, Nonlinear ion-acoustic solitary waves in a dusty and weakly relativistic electron-positron-ion plasma with relativistic positron beam, Advances and Applications in Fluid Mechanics 31(1) (2024), 23-38. https://doi.org/10.17654/0973468624002
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References:[1] G. C. Das and S. N. Paul, Phys. Fluids 28(3) (1985), 823-825.[2] N. N. Rao, P. K. Shukla and M. Y. Yu, Planet. Space Sci. 38(4) (1990), 543-546.[3] S. K. El-Labany and S. M. Shaaban, J. Plasma Physics 53(2) (1995), 245-252.[4] B. C. Kalita and S. N. Barman, J. Phys. Soc. Japan 64(3) (1995), 784-790.[5] B. C. Kalita, S. N. Barman and G. Goswami, Physics of Plasmas 3 (1996), 145.[6] M. R. Amin, G. E. Morfill and P. K. Shukla, Physical Review E 58(5) (1998), 6517.[7] P. K. Shukla, Physics of Plasmas 7(3) (2000), 1044-1046.[8] C. R. Choi, C. Ryu, Chang-Mo, D. Y. Lee and Yonggi Kim, Physics of Plasmas 12 (2005), 072301.[9] M. Tribeche and A. Berbri, J. Plasma Physics 74(2) (2008), 245-259.[10] M. G. M. Anowar and A. A. Mamun, Physics Letters A 372 (2008), 5896-5900.[11] H. Alinejad, Astrophys. Space Sci. 334 (2011), 331-336.[12] H. Alinejad, Astrophys. Space Sci. 337 (2012), 223-229.[13] M. Bacha and M. Tribeche, J. Plasma Physics 79(5) (2013), 569-576.[14] R. Das and K. Karmakar, Can. J. Phys. 91 (2013), 839-843.[15] A. Nazari-Golshan and S. S. Nourazar, Physics of Plasmas 20 (2013), 103701.[16] N. S. Saini and Kuldeep Singh, Phys. Plasmas 23(10) (2016), 103701.[17] B. C. Kalita and S. Das, J. Plasma Phys. 83 (2017), 905830502.[18] S. Das, IOP Conf. Series: Journal of Physics: Conf. Series 1290 (2019), 012025.[19] M. R. Hasnan, S. Biswas, K. Habib and S. Sultana, Results in Physics 33 (2022), 105106.