THE EFFECT OF ANISOTROPY ON DARCY-BRINKMAN CONVECTION IN A MAXWELL FLUID-SATURATED POROUS LAYER
The linear stability of Maxwell fluid-saturated anisotropic porous layer heated from below and cooled from above is investigated analytically when the fluid and solid phases are not in local thermal equilibrium. For the porous medium, the Brinkman model is employed. By applying normal mode analysis method, the dispersion relation has been derived and solved analytically. The linear stability theory is used to calculate the Rayleigh number and corresponding wave number for the onset of convection under the assumption that the solid and fluid phases have identical temperatures at the bounding surfaces. The effect of anisotropic permeability on the onset of convection is shown graphically.
convection, anisotropy, Maxwell fluid, thermal non-equilibrium.
Received: November 26, 2023; Revised: December 21, 2023; Accepted: December 27, 2023; Published: January 30, 2024
How to cite this article: N. K. Enagi, Krishna B. Chavaraddi and Sridhar Kulkarni, The effect of anisotropy on Darcy-Brinkman convection in a Maxwell fluid-saturated porous layer, Advances and Applications in Fluid Mechanics 31(1) (2024), 1-22. http://dx.doi.org/10.17654/0973468624001
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References:[1] Anoj Kumar and B. S. Bhadauria, Thermal instability in a rotating anisotropic porous layer saturated by a viscoelastic fluid, Int. J. Non-Linear Mech. 46 (2011), 47-56.[2] N. Banu and D. A. S. Rees, Onset of Darcy-Benard convection using a thermal non-equilibrium model, Int. J. Heat and Mass Transfer 45 (2002), 2221-2228.[3] Chen Yin and Panpan pan, Thermal convection for an Oldroyd-B fluid in an anisotropic porous medium underlying a fluid layer, J. Heat Transfer 144(11) (2022), 113601.[4] S. Govender, On the effect of anisotropy on the stability of convection in a rotating porous media, Trans. Porous Media 64(3) (2006), 413-422.[5] S. Govender and P. Vadasz, The effect of mechanical and thermal anisotropy on the stability of gravity driven convection in rotating porous media in the presence of thermal non-equilibrium, Trans. Porous Media 69(1) (2007), 55-66.[6] K. B. Chavaraddi, N. K. Enagi and S. Kulkarni, Onset of convection in a couple stress fluid saturated rotating anisotropic porous layers using thermal non- equilibrium model, JP J. Heat Mass and Transfer 16(1) (2019), 125-142.[7] Leiv Storesletten and D. A. S. Rees, Onset of convection in an inclined anisotropic porous layer with internal heat generation, Fluids 4(2) (2019), 75.[8] M. S. Malashetty, I. S. Shivakumara and Sridhar Kulkarni, The onset of convection in an anisotropic porous layer using a thermal non equilibrium model, Transport in Porous Media 60(2) (2005), 199-215.[9] M. S. Malashetty, Mahantesh Swamy and Sridhar Kulkarni, Thermal convection in a rotating porous layer using a thermal non equilibrium model, Physics of Fluids 19(5) (2007), 054102.[10] M. S. Malashetty, I. S. Shivakumara, Sridhar Kulkarni and Mahantesh Swamy, Convective instability of Oldroyd-B fluid saturated porous layer heated from below using a thermal non-equilibrium model, Transport in Porous Media 64(1) (2006), 123-139.[11] A. Postelnicu, Effect of inertia on the onset of mixed convection in a porous layer using thermal non equilibrium model, J. Porous Media 10(50) (2007), 515-524.[12] I. S. Shivakumara, A. L. Mamatha and M. Ravish, Boundary and thermal non equilibrium effects on the onset of Darcy-Brinkman convection in a porous layer, J. Eng. Math. 67 (2010), 317-328.[13] I. S. Shivakumara, A. L. Mamatha and M. Ravisha, Local thermal non-equilibrium effects on thermal convection in a rotating anisotropic porous layer, Appl. Math. Comput. 259 (2015), 838-857.[14] G. C. Rana, The onset of convection in Walters’ (model B) fluid in a Darcy-Brinkman porous medium, J. Pure Appl. & Ind. Phys. 2(1) (2012), 55-62.[15] W. Tan and T. Masuoka, Stability analysis of a Maxwell fluid in a porous medium heated from below, Phys. Lett. A 360(3) (2007), 454-460.[16] N. K. Enagi, K. B. Chavaraddi and S. Kulkarni, Couple-stress fluid saturated rotating porous layer with internal heat generation and density maximum, JP J. Heat and Mass Transfer 35 (2023), 1-19.