[1] M. J. Iremonger and G. S. Kalsi, A numerical study of swage autofrettage, Journal of Pressure Vessel Technology 125 (2003), 347-351.
[2] J. M. Alegre, P. Bravo and M. Preciado, Fatigue behaviour of an autofrettaged high-pressure vessel for the food industry, Engineering Failure Analysis 14(2) (2007), 396-407.
[3] M. H. Hojjati and A. Hassani, Theoretical and finite-element modeling of autofrettage process in strain-hardening thick-walled cylinders, International Journal of Pressure Vessels and Piping 84(5) (2007), 310-319.
[4] S. K. Koh, S. I. Lee, S. H. Chung and K. Y. Lee, Fatigue design of an autofrettaged thick-walled pressure vessel using CAE techniques, International Journal of Pressure Vessels and Piping 74(1) (1997), 19-32.
[5] A. P. Parker, Stress intensity and fatigue crack growth in multiple-cracked, pressurised, partially autofrettaged thick cylinders, Fatigue Fract. Eng. Mater. Struct. 4 (1981), 321-330.
[6] A. P. Parker and J. R. Farrow, Stress intensity factors for multiple radial cracks emanating from the bore of an autofrettaged or thermally stressed, thick cylinder, Engineering Fracture Mechanics 14(1) (1981), 237-241.
[7] M. Perl and J. Perry, An experimental-numerical determination of the three-dimensional autofrettage residual stress field incorporating Bauschinger effects, Journal of Pressure Vessel Technology 128(2) (2006), 173-178.
[8] A. Stacey and G. A. Webster, Determination of residual stress distributions in autofrettaged tubing, International Journal of Pressure Vessels and Piping 31(3) (1988), 205-220.
[9] M. Frija, Finite element modelling of shot peening process: Prediction of the compressive residual stresses, the plastic deformations and the surface integrity, Materials Science and Engineering: A 426(1-2) (2006), 173-180.
[10] G. H. Majzoobi, R. Azizi and A. Alavi Nia, A three-dimensional simulation of shot peening process using multiple shot impacts, Journal of Materials Processing Technology 164-165 (2005), 1226-1234.
[11] R. Shivpuri, X. Cheng and Y. Mao, Elasto-plastic pseudo-dynamic numerical model for the design of shot peening process parameters, Materials & Design 30(8) (2009), 3112-3120.
[12] M. A. S. Torres and H. J. C. Voorwald, An evaluation of shot peening, residual stress and stress relaxation on the fatigue life of AISI 4340 steel, International Journal of Fatigue 24(8) (2002), 877-886.
[13] A. Piela, Analysis of the metal flow in swaging-numerical modelling and experimental verification, International Journal of Mechanical Sciences 39(2) (1997), 221-231.
[14] Bert Verlinden, J.D.I.S.a.R.D.D., Chapter 11 Forming techniques, in Pergamon Materials Series, Pergamon, 2007, pp. 233-332.
[15] R. Bihamta, M. R. Movahhedy and A. R. Mashreghi, A numerical study of swage autofrettage of thick-walled tubes, Materials & Design 28(3) (2007), 804-815.
[16] G. Clark, Fatigue crack growth through residual stress fields-theoretical and experimental Studies on thick-walled cylinders, Theoretical and Applied Fracture Mechanics 2 (1984), 111-125.
[17] MSC. Marc, Theory and User Information, Volume A, 2008.
[18] J. L. Chaboche, A review of some plasticity and viscoplasticity constitutive theories, International Journal of Plasticity 24(10) (2008), 1642-1693.
[19] M. A. Vicente Alvarez, M. Bergant and T. Perez, Relaxation of the Bauschinger effect by thermal treatment on tempered martensitic steels, Materials Science and Engineering: A 527(21-22) (2005), 5939-5946.
[20] J. L. Chaboche, Constitutive equations for cyclic plasticity and cyclic viscoplasticity, International Journal of Plasticity 5(3) (1989), 247-302.
[21] Ansys, Release 10.0 Documentation for Ansys, 2008.
[22] J. Lemaitre and J. L. Chaboche, Mechanics of Solids Materials, Cambridge University Press, 1990. |