J. Warnatz, U. Maas and R. W. Dibble, Combustion, 4th ed., Springer, Germany, 2006, 378 pp.
[2] M. Matalon, Combustion Theory, Combustion Energy Frontier Research Centre, Princeton University, U.S.A., 2011, 175 pp.
[3] M. Pilling, Combustion Chemistry, Combustion Energy Frontier Research Centre, Princeton University, U.S.A., 2011, 169 pp.
[4] N. P. Yadav and A. Kurashi, Effect of swirl on the turbulent behavior of a dump combustor flow, Proc. IMechE Part G 224 (2011), 705-717.
[5] A. Valera-Medina, N. Syred and A. Griffiths, Visualization of coherent structures in a swirl burner under isothermal conditions, Combust. Flame 159 (2009), 1723-1734.
[6] P. M. Anacleto, E. C. Fernandez, M. V. Heitor and S. Shtork, Swirl flow characteristics and flame characteristics in a model lean premixed combustor, Combust. Sci. Tech. 175 (2003), 1369-1388.
[7] M. Kröner, J. Fritz and T. Sattelmayer, Flashback limits for combustion induced vortex breakdown in a swirl burner, J. Eng. Gas Turbines Power 125(3) (2003), 693-700.
[8] M. Kröner, T. Sattelmayer, J. Fritz, F. Kiesewetter and C. Hirsch, Flame propagation in swirling flows-effects of local extinction on the combustion induced vortex breakdown, Combust. Sci. Tech. 179(7) (2007), 1385-1416.
[9] A. Valera-Medina, M. O. Vigueras-Zuñiga, N. Syred and P. Bowen, Flashback analysis in swirl burners under a variety of geometries, Combust. Sci. Tech. (in press).
[10] C. O. Paschereit, B. Schuermans, W. Polifke and O. Mattson, Measurements of transfer matrices and source terms of premixed flames, J. Eng. Gas Turbines Power 124 (2002), 239-247.
[11] T. Lieuwen and V. Yang, Combustion Instabilities in Gas Turbine Engines, 1st ed., AIAA, Prog. Astronaut. Aeronaut., Vol. 210, 2005.
[12] C. O. Paschereit and E. Gutmark, Control of high-frequency thermo-acoustic pulsations by distributed vortex generators, AIAA J. 44(3) (2006), 550-557.
[13] D. Bohn, J. F Willie and N. Ohlendorf, Phase shift control of combustion instability in a gas turbine matrix burner using acoustic forcing and pulsed fuel injection, Proc. ASME Turbo Expo, Florida, U.S.A., 2009, GT2009-59083.
[14] P. Glaude, R. Fournet, R. Bounaceur and M. Moliere, Gas turbine and biodiesel: a clarification of the relative NOx indices of FAME, gasoil and natural gas, Proc. ASME Turbo Expo, 2009, ref. GT2009-59623.
[15] E. Benini, S. Pandolfo and S. Zoppellari, Reduction of NO emissions in a turbojet combustor by direct water/steam injection: numerical and experimental assessment, Appl. Therm. Eng. 29 (2009), 3506-3510.
[16] D. Zhao, Y. Ohno, T. Furuhata, H. Yamashita, N. Arai and Y. Hisazumi, Combustion technology in a novel gas turbine system with steam injection and two-stage combustion, J. Chem. Eng. Japan 34(9) (2001), 1159-1164.
[17] M. Jonsson and J. Yan, Humified gas turbines – a review of proposed and implemented cycles, J. Energy 30 (2005), 1013-1078.
[18] K. Nishida, T. Takagi and S. Kinoshita, Regenerative steam-injection gas turbine systems, Appl. Energy 81 (2005), 231-246.
[19] M. Abdulsada, N. Syred, A. Griffiths, P. Bowen and S. Morris, Effect of swirl number and fuel type upon the combustion limits in swirl combustors, Proc. ASME Turbo Expo., 2011, GT2011-45544.
[20] J. J. Orta-Martínez, Control Activo de Ruido; Fundamentos y Aplicaciones en Ductos. Saint-Gobain Wanner, Madrid, España, 2008, pp. 85-110.
[21] Matlab. PEM. 2010. [www]. http://www.mathworks.com/access/helpdesk/help/toolbox/ident/ref/pem.html [Accessed December 2011].
[22] G. Cabodevila, Identification des systèmes. École Nationale Supérieure de Mécanique et des Microtechniques, 2010. [www]. http://www.femto-st.fr/~gonzalo.cabodevila/identification.pdf [Accessed December 2011]
[23] A. V. Oppenheim and A. S. Willsky, Signals and Systems, 2nd ed., Editorial Prentice Hall, 1997, 519 pp.
[24] Wilcox, Turbulence Modeling for CFD, DCW Industries, Inc., La Canada, California, 1998.
[25] V. Zimont, W. Polifke, M. Bettelini and W. Weisenstein, An efficient computational model for premixed turbulent combustion at high Reynolds numbers based on a turbulent flame speed closure, J. Gas Turbines Power 120 (1998), 526-532.
[26] A. Valera-Medina, N. Syred and A. Griffiths, Central recirculation zone analysis in an unconfined tangential swirl burner with varying degrees of premixing, Exp. Fluids, 2011, doi: 10.1007/s00348-00-1017-7.
[27] J. Dawson, V. Rodriquez-Martinez, N. Syred and T. O’Doherty, The effect of combustion instability on the structure of recirculation zones in confined swirling flames, Combust. Sci. Tech. 177(12) (2005), 2341-2371.
[28] F. Kiesewetter, M. Konle and T. Sattelmayer, Analysis of combustion induced vortex breakdown driven flame flashback in a premix burner with cylindrical mixing zone, J. Eng. Gas Turbines Power 129(4) (2007), 929-936. |