Content
Volume 142 (2025)
Volume 141 (2024)
Volume 140 (2023)
Volume 139 (2022)
Volume 138 (2022)
Volume 137 (2022)
Volume 136 (2022)
Volume 135 (2022)
Volume 134 (2022)
Volume 133 (2021)
Volume 132 (2021)
Volume 131 (2021)
Volume 130 (2021)
Volume 129 (2021)
Volume 128 (2021)
Volume 127 (2020)
Volume 126 (2020)
Volume 125 (2020)
Volume 124 (2020)
Volume 123 (2020)
Volume 122 (2020)
Volume 121 (2019)
Volume 120 (2019)
Volume 119 (2019)
Volume 118 (2019)
Volume 117 (2019)
Volume 116 (2019)
Volume 115 (2019)
Volume 114 (2019)
Volume 113 (2019)
Volume 112 (2019)
Volume 111 (2019)
Volume 110 (2019)
Volume 109 (2018)
Volume 108 (2018)
Volume 107 (2018)
Volume 106 (2018)
Volume 105 (2018)
Volume 104 (2018)
Volume 103 (2018)
Volume 103, Issue 11
Pg 1721 - 1888 (June 2018)
Volume 103, Issue 12
Pg 1889 - 2067 (June 2018)
Volume 103, Issue 9
Pg 1399 - 1533 (May 2018)
Volume 103, Issue 10
Pg 1535 - 1720 (May 2018)
Volume 103, Issue 7
Pg 1103 - 1249 (April 2018)
Volume 103, Issue 8
Pg 1251 - 1398 (April 2018)
Volume 103, Issue 6
Pg 977 - 1102 (March 2018)
Volume 103, Issue 3
Pg 561 - 689 (February 2018)
Volume 103, Issue 4
Pg 691 - 830 (February 2018)
Volume 103, Issue 1
Pg 1 - 270 (January 2018)
Volume 103, Issue 2
Pg 271 - 559 (January 2018)
Volume 102 (2017)
Volume 102, Issue 11
Pg 2531 - 2912 (December 2017)
Volume 102, Issue 12
Pg 2913 - 3271 (December 2017)
Volume 102, Issue 9
Pg 1831 - 2142 (November 2017)
Volume 102, Issue 10
Pg 2143 - 2529 (November 2017)
Volume 102, Issue 7
Pg 1319 - 1570 (October 2017)
Volume 102, Issue 8
Pg 1571 - 1829 (October 2017)
Volume 102, Issue 5
Pg 865 - 1064 (September 2017)
Volume 102, Issue 6
Pg 1065 - 1317 (September 2017)
Volume 102, Issue 3
Pg 453 - 654 (August 2017)
Volume 102, Issue 1
Pg 1 - 249 (July 2017)
Volume 102, Issue 2
Pg 251 - 452 (July 2017)
Volume 101 (2017)
Volume 101, Issue 11
Pg 2349 - 2574 (June 2017)
Volume 101, Issue 12
Pg 2575 - 2818 (June 2017)
Volume 101, Issue 9
Pg 1859 - 2094 (May 2017)
Volume 101, Issue 10
Pg 2095 - 2347 (May 2017)
Volume 101, Issue 7
Pg 1377 - 1617 (April 2017)
Volume 101, Issue 8
Pg 1619 - 1857 (April 2017)
Volume 101, Issue 5
Pg 931 - 1165 (March 2017)
Volume 101, Issue 6
Pg 1167 - 1375 (March 2017)
Volume 101, Issue 3
Pg 443 - 688 (February 2017)
Volume 101, Issue 4
Pg 689 - 929 (February 2017)
Volume 101, Issue 1
Pg 1 - 214 (January 2017)
Volume 101, Issue 2
Pg 215 - 441 (January 2017)
Volume 100 (2016)
Volume 100, Issue 11
Pg 1745 - 1963 (December 2016)
Volume 100, Issue 12
Pg 1965 - 2182 (December 2016)
Volume 100, Issue 9
Pg 1357 - 1544 (November 2016)
Volume 100, Issue 10
Pg 1545 - 1744 (November 2016)
Volume 100, Issue 7
Pg 977 - 1157 (October 2016)
Volume 100, Issue 8
Pg 1159 - 1355 (October 2016)
Volume 100, Issue 5
Pg 661 - 820 (September 2016)
Volume 100, Issue 6
Pg 821 - 976 (September 2016)
Volume 100, Issue 3
Pg 343 - 520 (August 2016)
Volume 100, Issue 4
Pg 521 - 660 (August 2016)
Volume 100, Issue 1
Pg 1 - 170 (July 2016)
Volume 100, Issue 2
Pg 171 - 342 (July 2016)
Volume 99 (2016)
Volume 99, Issue 11
Pg 1603 - 1778 (June 2016)
Volume 99, Issue 12
Pg 1779 - 1970 (June 2016)
Volume 99, Issue 9
Pg 1283 - 1441 (May 2016)
Volume 99, Issue 10
Pg 1443 - 1601 (May 2016)
Volume 99, Issue 7
Pg 959 - 1117 (April 2016)
Volume 99, Issue 8
Pg 1119 - 1281 (April 2016)
Volume 99, Issue 6
Pg 775 - 958 (March 2016)
Volume 99, Issue 3
Pg 301 - 454 (February 2016)
Volume 99, Issue 4
Pg 455 - 614 (February 2016)
Volume 99, Issue 1
Pg 1 - 152 (January 2016)
Volume 99, Issue 2
Pg 153 - 300 (January 2016)
Volume 98 (2015)
Volume 97 (2015)
Volume 96 (2015)
Volume 95 (2014)
Volume 94 (2014)
Volume 93 (2014)
Volume 92 (2014)
Volume 91 (2014)
Volume 90 (2014)
Volume 89 (2014)
Volume 88 (2014)
Volume 87 (2014)
Volume 86 (2014)
Volume 85 (2014)
Volume 84 (2014)
Volume 83 (2013)
Volume 82 (2013)
Volume 81 (2013)
Volume 80 (2013)
Volume 79 (2013)
Special Volume (2013)
Volume 78 (2013)
Special Volume (2013)
Volume 77 (2013)
Volume 76 (2013)
Special Volume (2013)
Volume 75 (2013)
Volume 74 (2013)
Volume 73 (2013)
Special Volume (2013)
Volume 72 (2013)
Volume 71 (2012)
Volume 70 (2012)
Volume 69 (2012)
Volume 68 (2012)
Volume 67 (2012)
Volume 66 (2012)
Volume 65 (2012)
Volume 64 (2012)
Volume 63 (2012)
Volume 62 (2012)
Volume 61 (2012)
Volume 60 (2012)
Volume 59 (2011)
Volume 58 (2011)
Volume 57 (2011)
Volume 56 (2011)
Volume 55 (2011)
Volume 54 (2011)
Volume 53 (2011)
Volume 52 (2011)
Volume 51 (2011)
Volume 50 (2011)
Volume 49 (2011)
Volume 48 (2011)
Volume 47 (2010)
Volume 46 (2010)
Volume 45 (2010)
Volume 44 (2010)
Volume 43 (2010)
Volume 42 (2010)
Volume 41 (2010)
Volume 40 (2010)
Volume 39 (2010)
Volume 38 (2010)
Volume 37 (2010)
Volume 36 (2010)
Volume 35 (2009)
Volume 34 (2009)
Volume 33 (2009)
Volume 32 (2009)
Volume 31 (2008)
Volume 30 (2008)
Volume 29 (2008)
Volume 28 (2008)
Volume 27 (2007)
Volume 26 (2007)
Volume 25 (2007)
Volume 24 (2007)
Volume 23 (2006)
Volume 22 (2006)
Volume 21 (2006)
Volume 20 (2006)
Volume 19 (2005)
Volume 18 (2005)
Volume 17 (2005)
Volume 15 (2004)
Volume 14 (2004)
Volume 13 (2004)
Volume 12 (2004)
Volume 11 (2003)
Volume 10 (2003)
Volume 9 (2003)
Volume 8 (2003)
Volume 7 (2002)
Volume 6 (2002)
Volume 5 (2002)
Volume 4 (2002)
Volume 3 (2001)
Volume 2 (2000)
Far East Journal of Mathematical Sciences (FJMS)
-->
Abstract: Let R be a ring.
Then a unital left R -module
is said to have
property (I ) if every injective
endomorphism of
is an automorphism.
The ring R is called
a left (right) FGI -ring if every left
(right) R -module with property (I )
is finitely generated: R is called an FGI -ring if it is both a left and a right FGI -ring.
A ring R is called
duo-ring if every left (right) ideal of R
is a two-sided ideal. If
is a left R -module,
then we denote
and
The R -module
is called a
reflexive module if the natural homomorphism
is an isomorphism.
The
ring R is called a left (resp. right) TFR -ring
if every left (resp. right) R -module
is reflexive if and only if it is finitely generated.
The
ring R is called a TFR -ring if R is both a
left and a right TFR -ring.
In this paper, we first give a characterization of a TFR -duo
ring. Then we prove that a local duo-ring R
is TFR if and only if R is an
Artinian self-injective ring. Finally, if R is a local duo-ring with maximal ideal J such that
then R
is a TFR -ring if and only if R
is an FGI -ring.
Keywords and phrases: duo-ring, reflexive module, finitely generated module, Artinian ring, FGI -ring, TFR -ring, self-injective ring.
Number of Downloads: 409 | Number of Views: 1596
P-ISSN: 0972-0871
E-ISSN: 2584-1246
Journal Stats
Publication count: 4137
Citation count (Google Scholar): 12446
h10-index (Google Scholar): 315
h-index (Google Scholar): 38
Downloads : 1512005
Views: 5706420
Downloads/publish articles: 365.48
Citations (Google Scholar)/publish articles: 3.01