Keywords and phrases: geyser, Kikhpinych, hydrothermal, CO2, modeling, infiltration, discharge, chloride tracer.
Received: October 16, 2024; Revised: November 30, 2024; Accepted: December 5, 2024; Published: January 4, 2025
How to cite this article: A. V. Kiryukhin, A. V. Sergeeva, O. O. Usacheva, V. Y. Lavrushin and I. V. Tokarev, Thermal-hydrodynamic modeling of the Valley of Geysers and Kikhpinych volcano magma-hydrothermal system, JP Journal of Heat and Mass Transfer 38(1) (2025), 127-168. https://doi.org/10.17654/0973576325007
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References [1] V. V. Averiev and N. G. Sugrobova, Natural thermal occurrences at the Pauzhetskoye field/in the book Pauzhetskiye hot waters in Kamchatka, Moscow, Publishing House “Nauka”, 1965, pp. 41-42 (in Russian). [2] O. A. Braitseva, I. V. Florensky, V. V. Ponomareva et al., Activity history of the Kikhpinych volcano in the Holocene, Volcanology and Seismology No. 6 (1985), 3-19 (in Russian). [3] P. R. L. Brown and J. L. Lawless, Characteristics of hydrothermal eruptions, with examples from New Zealand and elsewhere, Earth Sci. Rev. 52 (1998), 299-331. [4] A. Ceoccarelli and R. Celati, The southern boundary of Lardarello geothermal field, Geothermics 16(5/6) (1987), 505-515. [5] J. Eichelberger, A. Kiryukhin, S. Mollo, N. Tsuchiya and M. Villeneuve, Exploring and modeling the magma-hydrothermal regime, Geosciences 10 (2020), 234. doi:10.3390/geosciences10060234. [6] A. J. Ellis and S. H. Wilson, The heat from the Wairakei-Taupo thermal region calculated from the chloride output, N.Z.: Journal of Science and Technology, Sec. B 36 (1955), 622-631. [7] R. O. Fournier, Application of water chemistry to geothermal exploration and reservoir engineering, Geothermal Systems, Principle and Case Histories, L. Rybach and L. J. P. Muffler, eds., J. Wiley, New York, 1981, pp. 109-143. [8] I. Friedman and J. R. O’Neil, Compilation of stable isotope fractionation factors of geochemical interest, U. S. Geol. Surv. Prof. Pap. 440-KK, 1977, p. 49. [9] M. A. Grant, Broadlands - a gas dominated geothermal field, Geothermics 6(1/2) (1977), 9-31. [10] M. Hanano et al., Overview of Production at the Mori Geothermal Field, Japan, Proc. World Geothermal Congress 2005, Antalya, Turkey, 24-29 April 2005. [11] O. F. Kardanova and I. K. Dubrovskaya, Status of the crater of the Old Kikhpinych Vulcano from 1980 to 1989 years, Volcanology and Seismology 1 (1994), 19 (in Russian). [12] O. F. Kardanova, I. K. Dubrovskaya and Y. D. Muravyev, Termoanomalia of the savicha conus (Kikhpinych vulcan, Kamchatka): results of IR_Survey data and temporary surveys for 30 years (1982-2012), Vulcanology and Seismology 6 (2015), 24-33 (in Russian). [13] A. V. Kiryukhin and V. A. Yampolsky, Modeling study of the Pauzhetsky geothermal field, Kamchatka, Russia, Geothermics 33 (2004), 421-442. [14] A. V. Kiryukhin, N. P. Asaulova and S. Finsterle, Inverse modeling and forecasting for the exploitation of the Pauzhetsky geothermal field, Kamchatka, Russia, Geothermics 37 (2008), p.24. [15] A. V. Kiryukhin, A. Y. Polyakov, N. P. Asaulova and O. B. Vereina, Estimating the influence of filtering during the operation of the Pauzhetka and Mutnovskii high-temperature geothermal fields, Kamchatka, Russia, J. Volcanolog. Seismol. 8(3) (2014), 156-167. [16] A. V. Kiryukhin, T. V. Rychkova and I. K. Dubrovskaya, Hydrothermal system in Geysers Valley (Kamchatka) and triggers of the Giant landslide, Appl. Geochem. J. 27 (2012), 1753-1766. [17] A. V. Kiryukhin, T. V. Rychkova and E. O. Dubinina, An analysis of hydrogeological behavior in the geyser valley, Kronotskii Nature Reserve, Kamchatka after the Disaster of June 3, 2007, J. Volcanolog. Seismol. 9(1) (2015), 1-16. [18] A. V. Kiryukhin, S. A. Fedotov and P. A. Kiryukhin, A geomechanical interpretation of the local seismicity related to eruptions and renewed activity on Tolbachik, Koryakskii, and Avacha Volcanoes, Kamchatka, in 2008-2012, J. Volcanolog. Seismol. 10 (2016), 275-291. https://doi.org/10.1134/S0742046316040047. [19] A. Kiryukhin, Modeling and observations of geyser activity in relation to catastrophic landslides-mudflows (Kronotsky nature reserve, Kamchatka, Russia), Journal of Volcanology and Geothermal Research 323 (2016), 129-147. [20] A. Kiryukhin, V. Sugrobov and E. Sonnenthal, Geysers Valley CO2 cycling geological engine (Kamchatka, Russia), Geofluids Journal (2018), 17. [21] A. Kiryukhin and G. Karpov, A CO2-driven gas lift mechanism in geyser cycling (Uzon Caldera, Kamchatka), Geosciences 10 (2020), 180. DOI:10.3390/geosciences10050180. [22] A. V. Kiryukhin, T. V. Rychkova and A. V. V. Sergeeva, Modeling of conditions for the formation of permeable geyser channels in areas of acid volcanism, Volcanology and Seismology 2 (2020), 3-16. [23] A. V. Kiryukhin, Geothermofluid mechanics of hydrothermal, volcanic and hydrocarbon systems, St. Petersburg: Eco-Vector I.P., 2020, 431 pp (in Russian). [24] A. V. Kiryukhin, A. Y. Polyakov, N. B. Zhuravlev, N. Tsuchiya, T. V. Rychkova, O. O. Usacheva and I. K. Dubrovskaya, Dynamics of natural discharge of the hydrothermal system and geyser eruption regime in the Valley of Geysers, Kamchatka, Applied Geochemistry 136 (2022), Article ID 105166. [25] A. V. Kiryukhin, Application of chloride tracer method for estimation of geyser eruption volumes and dynamics of hydrothermal systems unloading, Proceedings of the All-Russian Scientific Conference with international participation Geothermal Volcanology, Hydrogeology, Geology of Oil and Gas (Geothermal Volcanology Workshop 2022), August 29 - September 3, 2022 - Petropavlovsk- Kamchatsky: IV & S FEB RAS, 2022, pp. 99-103. [26] A. V. Kiryukhin, A. V. Sergeeva and O. O. Usacheva, Modeling of the thermal-hydrodynamic and chemical regime of geyser reservoir (Valley of Geyser, Kamchatka), Geothermics 115 (2023), 102808. [27] Y. A. Kugaenko, V. A. Saltykov and A. A. Konovalova, Local seismicity of the geyser valley district data from following 2008-2009, Kraunz Bulletin, Earth Sciences 1(15) (2010), 90-99 (in Russian). [28] E. V. Lebedeva and S. S. Chernomorets, Debris flow activity and specific features of Debris flow formation in the Geysernaya River Valley (Kamchatka), Russian Journal of Pacific Geology 18(S1) (2024), S15-S27. DOI 10.1134/S1819714024700179. [29] A. V. Leonov, Catalog of geysers in the Kronotsky Reserve, Valley of Geysers and the Uzon Volcano Caldera: History and Modernity, Reart Publishing House LLC, Moscow, 2017, p. 384. [30] V. L. Leonov, Geological structure and history of Geysers Valley, V. M. Sugrobov, N. G. Sugrobova, V. A. Droznin, G. A. Karpov and V. L. Leonov, eds., Geysers Valley – Pearl of Kamchatka, Scientific Guidebook, Kamchatpress, Petropavlovsk-Kamchatsky, 2009, pp. 35-39 (in Russian). [31] M. J. Lippmann, Overview of Cerro Prieto studies, Proc. VIII Workshop, Stanford, 1982, pp. 49-66. [32] E. F. Lloyd, Geology and hot springs of Orakeikorako, New Zealand Geological Survey Bulletin 85 (1972), 163. [33] P. Lundgren and Z. Lu, Inflation model of Uzon caldera, Kamchatka, constrained by satellite radar interferometry observations, Geophys. Res. Lett. 33 (2006), L06301. [34] R. D. Moore, Slug injection using salt in solution, Streamline Watershed Management Bulletin 8(2) (2005), 1-6. [35] G. F. Pilipenko, Parohydrotherms of Uzon caldera as an example of unloading of high-temperature hydrothermal system, Author’s abstract, Cand. Diss. Institute of Volcanology, FEFC AS USSR, P-Kamchatsky, 1973. [36] A. Yu. Polyakov and A. V. Kiryukhin, Device for extraction of non-condensed gas from geyser channels (patent No. 0195670 (RU 0195670 U1)), App. 2019.04.05; publ. 2020.02.03. [37] K. Pruess, C. Oldenburg and G. Moridis, TOUGH2 user’s guide, Version 2.0, Rep. LBNL-43134, Lawrence Berkeley Natl. Lab., Berkeley, California, 1999, Revised 2012. [38] K. Sato, Mori geothermal power plant, Geothermal Fields and Geothermal Power Plants in Japan, Proc. Int. Symposium, 1988, pp. 21-25. [39] A. Sergeeva and A. Kiryukhin, Secondary minerals in the geysers of the Valley of Geysers (Kamchatka), Proc. 16th International Symposium on Water-Rock Interaction and 13th International Symposium on Applied Isotope Geochemistry, Tomsk, 2019. [40] State Geological Map of the Russian Federation M 1:200000 East Kamchatka Series N57-XVIIS-Peterburg, VSEGEI, 1993. [41] F. Sugiaman, Geochemical response to production of the Tiwi geothermal field, Philippines, Geothermics 33 (2004), 57-86. [42] V. M. Sugrobov, N. G. Sugrobova, V. A. Droznin, G. A. Karpov and V. L. Leonov, The Valley of Geysers - the Pearl of Kamchatka (Scientific Guide), Kamchatpress, Petropavlovsk-Kamchatsky, 2007, p. 108. [43] Y. Taran, C. Cardellini, K. Tarasov and N. Malik, Diffusive emission of carbon dioxide and hydrogen sulfide from Valley of Death, Kamchatka, Russia, Journal of Volcanology and Geothermal Research 447 (2024), 108011. [44] K. Yasukawa, N. Nishikawa, M. Sasada and T. Okumura, Country update of Japan, Proceedings World Geothermal Congress 2020 + 1 Reykjavik, Iceland, 2021.
|