Keywords and phrases: Casson fluid, magnetic field, mixed convection, thermal radiation, Keller-Box solution
Received: June 20, 2024; Revised: November 24, 2024; Accepted: November 29, 2024; Published: January 4, 2025
How to cite this article: P. Ramireddy and K. Jayalakshmi, The impression of thermal stratification and Joule heating on hybrid nanofluid over a porous stretching cylinder, JP Journal of Heat and Mass Transfer 38(1) (2025), 47-76. https://doi.org/10.17654/0973576325003
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References: [1] S. U. S. Choi and J. A. Eastman, Enhancing thermal conductivity of fluids with nanoparticles, American Society of Mechanical Engineers, Vol. 66, 1995, pp. 99-105. [2] J. Buongiorno, Convective transport in nanofluids, J. Heat Transf. 128 (2006), 240-250. [3] W. A. Khan and I. Pop, Boundary-layer flow of a nanofluid past a stretching sheet, Int. J. Heat Mass Transf. 53(11-12) (2010), 2477-2483. [4] S. Nadeem and C. Lee, Boundary layer flow of nanofluid over an exponentially stretching surface, Nanoscale Res. Lett. 7 (2012), 94-99. [5] K. Das, P. R. Duari and P. K. Kundu, Nanofluid flow over an unsteady stretching surface in presence of thermal radiation, Alex. Eng. J. 53(3) (2014), 737-745. [6] M. Daba and P. Devaraj, Unsteady boundary layer flow of a nanofluid over a stretching sheet with variable fluid properties in the presence of thermal radiation, Thermophys. Aeromech. 23 (2016), 403-413. [7] V. Poply and K. Vinita, Analysis of outer velocity and heat transfer of nanofluid past a stretching cylinder with heat generation and radiation, Proc. Int. Conf. Trends Comput. Cogn. Eng. 1169 (2021), 215-234. [8] V. P. Vinita and R. Devi, A two-component modeling for free stream velocity in magnetohydrodynamic nanofluid flow with radiation and chemical reaction over a stretching cylinder, Heat Transf. 50(4) (2021), 3603-3619. [9] W. Jamshed et al., Evaluating the unsteady Casson nanofluid over a stretching sheet with solar thermal radiation: an optimal case study, Case Stud. Thermal Eng. 26 (2021), 101160. [10] W. Jamshed, K. S. Nisar, R. J. P. Gowda, R. N. Kumar and B. C. Prasannakumara, Radiative heat transfer of second grade nanofluid flow past a porous flat surface: a single phase mathematical model, Phys. Scr. 96(6) (2021), 064006. [11] W. Jamshed and K. S. Nisar, Computational single-phase comparative study of a Williamson nanofluid in a parabolic trough solar collector via the Keller Box method, Int. J. Energy Res. 45(7) (2021), 10696-10718. [12] S. Suresh, K. P. Venkitaraj, P. Selvakumar and M. Chandrasekar, Synthesis of Al2O3-Cu/water hybrid nanofluids using two step method and its thermos physical properties, Colloids Surf. A 388(1-3) (2011), 41-48. [13] M. H. Esfe, A. A. A. Arani, M. Rezaie, W. M. Yan and A. Karimipour, Experimental determination of thermal conductivity and dynamic viscosity of Ag-MgO/water hybrid nanofluid, Int. Commun. Heat Mass Transf. 66 (2015), 189-195. [14] T. Hayat and S. Nadeem, Heat transfer enhancement with Ag-CuO/water hybrid nanofluid, Results Phys. 7 (2017), 2317-2324. [15] A. J. Chamkha, A. S. Dogonchi and D. D. Ganji, Magneto-hydrodynamic flow and heat transfer of a hybrid nanofluid in a rotating system among two surfaces in the presence of thermal radiation and Joule heating, Am. Inst. Phys. 9 (2019), 025103. [16] R. Ellahi et al., Study of two-phase Newtonian nanofluid flow hybrid with Hafnium particles under the effects of slip, Inventions 5(1) (2020), 6. [17] M. Nawaz, U. Nazir, S. Saleem and S. O. Alharbi, An enhancement of thermal performance of ethylene glycol by nano and hybrid nanoparticles, Physica A Stat. Mech. Appl. 551 (2020), 124527. [18] A. Ali et al., Investigation on TiO2-Cu/H2O hybrid nanofluid with slip conditions in MHD peristaltic flow of Jeffery material, J. Thermal Anal. Calorim. 143 (2021), 1985-1996. [19] S. Mumraiz, A. Ali, M. Awais, M. Shutaywi and Z. Shah, Entropy generation in electrical magnetohydrodynamic flow of Al2O3-Cu/H2O hybrid nanofluid with non-uniform heat flux, J. Therm. Anal. Calorim. 143 (2021), 2135-2148. [20] W. U. Khan et al., Analytical assessment of Al2O3-Ag/H2O hybrid nanofluid influenced by induced magnetic field for second law analysis with mixed convection, viscous dissipation and heat generation, Coatings 11 (2021), 498. [21] A. Mourad et al., Galerkin finite element analysis of thermal aspects of Fe3O4- MWCNT/water hybrid nanofluid filled in wavy enclosure with uniform magnetic field effect, Int. Commun. Heat Mass Transf. 126 (2021), 105461. [22] W. Jamshed et al., Computational frame work of Cattaneo-Christov heat flux effects on engine oil based Williamson hybrid nanofluids: a thermal case study, Case Stud. Thermal Eng. 26 (2021), 101179. [23] C. Y. Wang, Fluid flow due to a stretching cylinder, Phys. Fluids 31 (1988), 466-468. [24] K. Vajravelu, K. V. Prasa and S. R. Santhi, Axisymmetric MHD flow and heat transfer at a non iso-thermal stretching cylinder in the presence of heat generation or absorption, Appl. Math. Comput. 219 (2012), 3993-4005. [25] S. Mukhopadhyay, MHD boundary layer slip flow along a stretching cylinder, Ain Shams Eng. J. 4 (2013), 317-324. [26] M. Qasim, Z. H. Khan, W. A. Khan and I. A. Shah, MHD boundary layer slip flow and heat transfer of ferrofluid along a stretching cylinder with prescribed heat flux, PLoS ONE 9 (2014), e83930. [27] M. Bilal, M. Sagheer and S. Hussain, Numerical study of magneto-hydrodynamics and thermal radiation on Williamson nanofluid flow over a stretching cylinder with variable thermal conductivity, Alex. Eng. J. 57 (2018), 3281-3289. [28] V. Poply, P. Singh and A. K. Yadav, Stability analysis of MHD outer velocity flow on a stretching cylinder, Alex. Eng. J. 57(3) (2018), 2077-2083. [29] A. Ali, S. Mumraiz, S. Nawaz, M. Awais and S. Asghar, Third grade fluid flow of stretching cylinder with heat source/sink, J. Appl. Comput. Mech. 6 (2020), 1125-1132. [30] D. V. N. S. R. Murthy, P. R. S. Babu and C. Srinivasulu, Cattaneo-Christov model for mixed convective radiative flow of Casson fluid with Joule heating in the presence of chemical reaction over a stretching cylinder, JP Journal of Heat and Mass Transfer 34 (2023), 153-181. https://doi.org/10.17654/0973576323038. [31] J. Hartmann, Theory of laminar flow of an electrically conductive liquid in a homogeneous magnetic field, Munksgaard, 1937. [32] M. Waqas, Simulation of revised nanofluid model in the stagnation region of cross fluid by expanding-contracting cylinder, Int. J. Numer. Methods Heat Fluid Flow 30 (2019), 2193. [33] M. Waqas, Diffusion of stratification based chemically reactive Jeffrey liquid featuring mixed convection, Surf. Interfaces 23 (2021), 100783. [34] M. Waqas, A study on magneto-hydrodynamic non-Newtonian thermally radiative fluid considering mixed convection impact towards convective stratified surface, Int. Commun. Heat Mass Transf. 126 (2021), 105262. [35] W. Jamshed et al., Physical specifications of MHD mixed convective of Ostwald-de Waele nanofluids in a vented-cavity with inner elliptic cylinder, Int. Commun. Heat Mass Transf. 134 (2022), 106038. [36] M. I. Asjad, M. Zahid, M. Inc, D. Baleanu and B. Almohsen, Impact of activation energy and MHD on Williamson fluid flow in the presence of bioconvection, Alexandria Eng. J. 61 (2022), 8715-8727. [37] S. G. Bejawada et al., Radiation effect on MHD Casson fluid flow over an inclined nonlinear surface with chemical reaction in a Forchheimer porous medium, Alexandria Eng. J. 61 (2022), 8207-8220. [38] R. Kodi and O. Mopuri, Unsteady MHD oscillatory Casson fluid flow past an inclined vertical porous plate in the presence of chemical reaction with heat absorption and Soret effects, Heat Transf. 51 (2022), 733-752. [39] K. Sharma, S. Kumar, A. Narwal, F. Mebarek-Oudina and I. L. Animasaun, Convective MHD fluid flow over stretchable rotating disks with Dufour and Soret effects, Int. J. Appl. Comput. Math. 8 (2022), 1-12. [40] K. Guedri et al., Thermally dissipative flow and entropy analysis for electromagnetic trihybrid nanofluid flow past a stretching surface, ACS Omega 7 (2022), 33432-33442. [41] D. V. N. S. R. Murthy, P. R. S. Babu and C. Srinivasulu, Impact of buoyancy on axisymmetric Powell-Eyring fluid with Joule heating in presence of chemical reaction, JP Journal of Heat and Mass Transfer 34 (2023), 65-91. https://doi.org/10.17654/0973576323033. [42] G. Palani and A. Arutchelvi, MHD nanofluid flow past an inclined plate with Soret and Dufour effects, JP Journal of Heat and Mass Transfer 31 (2023), 123-145. [43] V. Sujatha, W. Sridhar, G. R. Ganesh and J. P. Praveen, MHD radiative Casson nanofluid flow over a permeable plate with chemical reaction and zero nanoparticle flux, JP Journal of Heat and Mass Transfer 32 (2023), 95-120. [44] H. A. Zuberi, M. Lal and N. A. Zainal, Computational hemorheology of blood flow with TiO2 nanoparticles over a non-linearly stretching sheet under magnetohydrodynamics, JP Journal of Heat and Mass Transfer 37(5) (2024), 701-710. [45] R. Kaye and S. Ahmed, Melting heat transfer and variable viscosity of a hydromagnetic flow over a stretching/shrinking sheet: numerical approach, JP Journal of Heat and Mass Transfer 37(2) (2024), 185-199. [46] S. Jothimani, Unsteady Casson fluid flow past a stretching sheet with radiation absorption and chemical reaction, JP Journal of Heat and Mass Transfer 37(1) (2024), 67-86. [47] S. A. Lone, S. Anwar, A. Saeed, T. Seangwattana, P. Kumam and W. A. Kumam, Comparative analysis of the time-dependent magnetized blood-based nanofluids flows over a stretching cylinder, Heliyon 9(4) (2023), e14537. https://doi.org/10.1016/j.heliyon.2023.e14537. [48] S. U. Devi and S. A. Devi, Heat transfer enhancement of Cu-Al2O3/water hybrid nanofluid flow over a stretching sheet, J. Niger Soc. Math. Biol. 36 (2017), 419-433. [49] N. S. Khashi’ie, N. M. Arifin, E. H. Hafidzuddin and N. Wahi, Thermally stratified flow of Cu-Al2O3/water hybrid nanofluid past a permeable stretching/shrinking circular cylinder, J. Adv. Res. Fluid Mech. Therm. Sci. 63 (2019), 154-163. [50] H. B. Keller, A new difference scheme for parabolic problems, Numerical Solution of Partial Differential Equations-II (1971), 327-350. [51] T. Fang, J. Zhang and S. Yao, Slip MHD viscous flow over a stretching sheet an exact solution, Commun. Nonlinear Sci. Numer. Simul. 14(11) (2009), 3731-3737. [52] M. Tamoor, M. Waqas, M. I. Khan, A. Alsaedi and T. Hayat, Magnetohydrodynamic flow of Casson fluid over a stretching cylinder, Results in Physics 7 (2017), 498-502. [53] L. G. Grubka and K. M. Bobba, Heat transfer characteristics of a continuous stretching surface with variable temperature, Journal of Heat Transfer 107 (1985), 248-250. [54] K. U. Rehman, M. Malik, T. Salahuddin and M. Naseer, Dual stratified mixed convection flow of Eyring-Powell fluid over an inclined stretching cylinder with heat generation/absorption effect, AIP Advances 6(7) (2016), 075112. [55] J. Tripathi, B. Vasu and O. A. Bég, Computational simulations of hybrid mediated nano-hemodynamics (Ag-Au/Blood) through an irregular symmetric stenosis, Computers in Biology and Medicine 130 (2021), 104213. [56] A. Divya and P. B. A. Reddy, Electromagnetohydrodynamic unsteady flow with entropy generation and hall current of hybrid nanofluid over a rotating disk: an application in hyperthermia therapeutic aspects, Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 236(13) (2022), 7511-7528.
|