Keywords and phrases: hyperbolic space, isotropy representations, unit bundle
Received: April 11, 2024; Revised: June 5, 2024; Accepted: September 12, 2014; Published: December 24, 2024
How to cite this article: Alfred TOURÉ, Daniel KOAMA, Mikaïlou COMPAORÉ and Marie Françoise OUEDRAOGO, The unit bundle of a real hyperbolic space, JP Journal of Geometry and Topology 30(2) (2024), 105-117. https://doi.org/10.17654/0972415X24007
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References: [1] A. L. Besse, Einstein Manifolds, Springer-Verlag, Berlin-Heidelberg, 1987. [2] A. L. Besse, Manifolds whose All Geodesics are Closed, Springer-Verlag, Berlin- Heidelberg, 1977. [3] S. Gallot, D. Hulin and J. Lafontaine, Introduction to Riemannian Geometry, Springer-Verlag, Berlin-Heidelberg, New York, London, Paris, Tokyo, 1987. [4] A. Kirillov, Eléments de la théorie des représentations, Editions Mir, 1974. [5] A. Toure, M. Compaore and S. Toure, On the geodesics of the projective plane of Cayley seeing like homogeneous space Int. J. Mathematical Sciences and Applications 4(1) (2014), 249-265. [6] A. Toure and M. Compaore, Sur la géométrie différentielle des fibrés unitaires de certains espaces symétriques de rang un, Afrika Matematika 20(3) (2009), 104 119. [7] A. Toure, Le fibré unitaire de la sphère standard, vu comme espace homogène, Afrika Matematika 6(3) (1996), 113-129. [8] A. Toure, Fibré unitaire et la variété des géodésiques du projectif complexe, Afrika Matematika 9(3) (1998), 87-104. [9] F. Tricerri and L. Vanhecke, Homogeneous Structures on Riemannian Manifolds, Cambridge University Press, 1983.
|