Keywords and phrases: bounded aperiodic dynamics, competitive modes, locating attractors, tracking attractor cross-sections
Received: June 5, 2024; Revised: September 4, 2024; Accepted: November 6, 2024; Published: November 21, 2024
How to cite this article: S. Roy Choudhury, Combining competitive modes and singularity theory to map higher-order and hidden attractors, Far East Journal of Dynamical Systems 38(1) (2025), 1-29. https://doi.org/10.17654/0972111825001
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References:
[1] S. Strogatz, Nonlinear Dynamics and Chaos, CRC Press, Boca Raton, 2000. [2] A. H. Nayfeh and B. Balachandran, Applied Nonlinear Dynamics, Wiley, New York, 1995. [3] T. Zhou and G. Chen, Classification of chaos in 3-D autonomous quadratic systems I. Basic framework and methods, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 16 (2006), 2459-2479. [4] R. A. Van Gorder and S. Roy Choudhury, Shil’nikov analysis of homoclinic and heteroclinic orbits of the T system, J. Comput. Nonlinear Dynam. 6 (2011), 021013. [5] V. S. Afraimovich, V. V. Bykov and L. P. Shilnikov, On the origin and structure of the Lorenz attractor, Sov. Phys. Dokl. 22 (1977), 253-255. [6] J. Wang, M. Zhao, Y. Zhang and X. Xiong, Shil’nikov-type orbits of Lorenz-family systems, Phys. A 375 (2007), 438 446. [7] D. Wilczak, The existence of Shilnikov homoclinic orbits in the Michelson system: a computer assisted proof, Found. Comput. Math. 6 (2006), 495-535. [8] J. S. W. Lamb, M.-A. Teixeira and K. N. Webster, Heteroclinic bifurcations near Hopf-zero bifurcation in reversible vector fields in J. Differential Equations 219 (2005), 78-115. [9] M. Corbera, J. Llibre and M.-A. Teixeira, Symmetric periodic orbits near a heteroclinic loop in formed by two singular points, a semistable periodic orbit and their invariant manifolds, Phys. D 238 (2009), 699 705. [10] B. Krauskopf and T. Rie, A Lin’s method approach to finding and continuing heteroclinic connections involving periodic orbits, Nonlinearity 21 (2008), 1655 1690. [11] T. Wagenknecht, Two-heteroclinic orbits emerging in the reversible homoclinic pitchfork bifurcation, Nonlinearity 18 (2005), 527-542. [12] Y. Jiang and J. Sun, Si’lnikov homoclinic orbits in a new chaotic system, Chaos Solitons Fractals 32 (2007), 150-159. [13] X. Wang, Si’lnikov chaos and Hopf bifurcation analysis of Rucklidge system, Chaos Solitons Fractals 42 (2009), 2208-2217. [14] J. Wang, M. Zhao, Y. Zhang and X. Xiong, Silnikov-type orbits of Lorenz-family systems, Phys. A 375 (2007), 438 446. [15] L. Zhou, Y. Chen and F. Chen, Stability and chaos of a damped satellite partially filled with liquid, Acta Astronautica 65 (2009), 1628-1638. [16] T. Zhou, G. Chen and S. CelikovskÝ, Silnikov chaos in the generalized Lorenz canonical form of dynamical systems, Nonlinear Dynam. 39 (2005), 319-334. [17] J. Wang, Z. Chen and Z. Yuan, Existence of a new three-dimensional chaotic attractor, Chaos Solitons Fractals 42 (2009), 3053-3057. [18] K. Watada, E. Tetsuro and H. Seishi, Shilnikov orbits in an autonomous third-order chaotic phase-locked loop, IEEE Trans. Circ. Syst. I 45 (1998), 979-983. [19] T. Zhou, Y. Tang and G. Chen, Chen’s attractor exists, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 14 (2004), 3167-3177. [20] Zengqiang Chen, Yong Yang and Zhuzhi Yuan, A single three-wing or four-wing chaotic attractor generated from a three-dimensional smooth quadratic autonomous system, Chaos Solitons Fractals 38 (2008), 1187-1196. [21] P. Yu, Bifurcation, Limit cycles and chaos of nonlinear dynamical systems, Bifurcation and Chaos in Complex Systems, Chapter 1, J.-Q. Sun and A. C. J. Luo, eds., Elsevier Science, Amsterdam, 2006, pp. 92-120. [22] W. Yao, P. Yu and C. Essex, Estimation of chaotic parameter regimes via generalized competitive mode approach, Commun. Nonlinear Sci. Numer. Simul. 7 (2002), 197-205. [23] S. Roy Choudhury and R. A. Van Gorder, Competitive modes as reliable predictors of chaos versus hyperchaos and as geometric mappings accurately delimiting attractors, Nonlinear Dynam. 69 (2012), 2255-2267. [24] L. Ruks and R. A. Van Gorder, On the inverse problem of competitive modes and the search for chaotic dynamics, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 27 (2017), 1730032 (18 pages). [25] S. Roy Choudhury and D. Mandragona, A chaotic chemical reactor with and without delay: bifurcations, competitive modes, and amplitude death, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 29 (2019), 1950019. [26] H. Haken, Synergetics, Springer, New York, 1983. [27] G. Nicolis and I. Prigogine, Self-organization in Nonequilibrium Systems, Wiley, New York, 1977. [28] N. A. Magnitskii, Nonclassical approach to the analysis of Hamiltonian and conservative systems, Comput. Math. Model. 24 (2013), 221-251. [29] D. Dudkowskia, S. Jafari, T. Kapitaniak, N. V. Kuznetsov, G. A. Leonov and A. Prasad, Hidden attractors in dynamical systems, Physics Reports 637 (2016), 1-50. [30] N. A. Magnitskii, On the nature of dynamic chaos in a neighborhood of a separatrix of a conservative system, Differential Equations 45 (2009), 662-669. [31] G. A. Leonov, N. V. Kuznetsov and T. N. Mokaev, Homoclinic orbits, and self-excited and hidden attractors in a Lorenz-like system describing convective fluid motion, European Physical Journal Special Topics 224 (2015), 1421-1458. [32] G. A. Leonov and N. V. Kuznetsov, Hidden attractors in dynamical systems. From hidden oscillations in Hilbert-Kolmogorov, Aizerman, and Kalman problems to hidden chaotic attractor in Chua circuits, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 23 (2013), 1330002. [33] N. V. Stankevich et al., Scenario of the birth of hidden attractors in the Chua circuit, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 27 (2017), 1730038. [34] F. Nazarimehr, B. Saedi, S. Jafari and J. C. Sprott, Are perpetual points sufficient for locating hidden attractors? Internat. J. Bifur. Chaos Appl. Sci. Engrg. 27 (2017), 1750037. [35] D. Dudkowski, A. Prasad and T. Kapitaniak, Describing chaotic attractors: regular and perpetual points, Chaos 28 (2018), 033604. [36] A. Ray, P. Saha and A. Roy Chowdhury, Competitive mode and topological properties of nonlinear systems with hidden attractor, Nonlinear Dynam. 88 (2017), 1989-2001. [37] M. F. Danca, M. Feckan, N. Kuznetsov and G. Chen, Looking more closely at the Rabinovich-Fabrikant system, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 26(2) (2016), 1650038. [38] S. Mancas and S. Roy Choudhury, Bifurcations of plane wave (CW) solutions in the complex cubic-quintic Ginzburg-Landau equation, Math. Comput. Simulation 74 (2007), 266-280. https://doi.org/10.1016/j.matcom.2006.10.009. [39] M. Golubitsky and D. Schaeffer, Singularities and Groups in Bifurcation Theory, Springer, New York, Volume I, 1985.
|