Keywords and phrases: biometrics, COVID-19, online questionnaire, medical history.
Received: August 9, 2024; Revised: September 3, 2024; Accepted: September 24, 2024; Published: November 7, 2024
How to cite this article: Bahjat Fakieh, COVID-19 symptoms data analysis and modeling from human biometrics and current health condition, JP Journal of Biostatistics 24(3) (2024), 527-554. https://doi.org/10.17654/0973514324029
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References: [1] H. Y. Lam et al., A review of epidemiology and public health control measures of COVID-19 variants in Hong Kong, December 2020 to June 2021, IJID Regions 2 (2022), 16-24. doi: https://doi.org/10.1016/j.ijregi.2021.11.002. [2] M. T. Tsakok et al., Parenchymal involvement on CT pulmonary angiography in SARS-CoV-2 Alpha variant infection and correlation of COVID-19 CT severity score with clinical disease severity and short-term prognosis in a UK cohort, Clinical Radiology 77(2) (2022), 148-155. doi: https://doi.org/10.1016/j.crad.2021.11.002. [3] P. A. Christensen et al., Delta variants of SARS-CoV-2 cause significantly increased vaccine breakthrough COVID-19 cases in Houston, Texas, The American Journal of Pathology 192 (2022), 320-331. doi: https://doi.org/10.1016/j.ajpath.2021.10.019. [4] P. Radvak et al., SARS-CoV-2 B.1.1.7 (alpha) and B.1.351 (beta) variants induce pathogenic patterns in K18-hACE2 transgenic mice distinct from early strains, Nature Communications 12(1) (2021), 6559. doi: 10.1038/s41467-021-26803-w. [5] T. P. Peacock et al., The SARS-CoV-2 variant, Omicron, shows rapid replication in human primary nasal epithelial cultures and efficiently uses the endosomal route of entry, bioRxiv, 2022. doi: 10.1101/2021.12.31.474653. [6] WHO, WHO Coronavirus Disease (COVID-19) Dashboard, Online Report, 2022. [Online]. Available: https://covid19.who.int/. [7] Worldometers, COVID-19 CORONAVIRUS PANDEMIC, Online Report, 2022. [Online]. Available: https://www.worldometers.info/coronavirus/. [8] N. Andrews et al., Effectiveness of COVID-19 booster vaccines against COVID-19 related symptoms, Hospitalisation and death in England, Nature Medicine 28 (2022), 831-837. doi: 10.1038/s41591-022-01699-1. [9] S. J. Stock et al., SARS-CoV-2 infection and COVID-19 vaccination rates in pregnant women in Scotland, Nature Medicine 28 (2022), 504-512. doi: 10.1038/s41591-021-01666-2. [10] A. N. M. Kraay, K. N. Nelson, C. Y. Zhao, D. Demory, J. S. Weitz and B. A. Lopman, Modeling serological testing to inform relaxation of social distancing for COVID-19 control, Nature Communications 12(1) (2021), 7063. doi: 10.1038/s41467-021-26774-y. [11] J. M. Trauer et al., Understanding how Victoria, Australia gained control of its second COVID-19 wave, Nature Communications 12(1) (2021), 6266. doi: 10.1038/s41467-021-26558-4. [12] H. Bastani et al., Efficient and targeted COVID-19 border testing via reinforcement learning, Nature 599(7883) (2021), 108-113. doi: 10.1038/s41586-021-04014-z. [13] J. J. Van Bavel et al., National identity predicts public health support during a global pandemic, Nature Communications 13(1) (2022), 517. doi: 10.1038/s41467-021-27668-9. [14] D. V. Gunasekeran, R. M. W. W. Tseng, Y.-C. Tham and T. Y. Wong, Applications of digital health for public health responses to COVID-19: a systematic scoping review of artificial intelligence, telehealth and related technologies, npj Digital Medicine 4(1) (2021), 40. doi: 10.1038/s41746-021-00412-9. [15] D. S. W. Ting, L. Carin, V. Dzau and T. Y. Wong, Digital technology and COVID-19, Nature Medicine 26(4) (2020), 459-461. doi: 10.1038/s41591-020-0824-5. [16] Editorial, Fighting COVID-19 with HPC, Nature Computational Science 1(12) (2021), 769-770. doi: 10.1038/s43588-021-00180-2. [17] J. Budd et al., Digital technologies in the public-health response to COVID-19, Nature Medicine 26(8) (2020), 1183-1192. doi: 10.1038/s41591-020-1011-4. [18] A. Martin et al., An artificial intelligence-based first-line defence against COVID-19: digitally screening citizens for risks via a chatbot, Scientific Reports 10(1) (2020), 19012. doi: 10.1038/s41598-020-75912-x. [19] H. Legido-Quigley et al., Are high-performing health systems resilient against the COVID-19 epidemic? The Lancet 395(10227) (2020), 848-850. [20] Z. Obermeyer, A machine-learning algorithm to target COVID testing of travellers, Nature, Online: Nature Publishing Group, 2021, pp. 34-36. [21] G. J. Soldano, J. A. Fraire, J. M. Finochietto and R. Quiroga, COVID-19 mitigation by digital contact tracing and contact prevention (app-based social exposure warnings), Scientific Reports 11(1) (2021), 14421. doi: 10.1038/s41598-021-93538-5. [22] M. Caserotti, P. Girardi, A. Tasso, E. Rubaltelli, L. Lotto and T. Gavaruzzi, Joint analysis of the intention to vaccinate and to use contact tracing app during the COVID-19 pandemic, Scientific Reports 12(1) (2022), 793. doi: 10.1038/s41598-021-04765-9. [23] S. Munzert, P. Selb, A. Gohdes, L. F. Stoetzer and W. Lowe, Tracking and promoting the usage of a COVID-19 contact tracing app, Nature Human Behaviour 5(2) (2021), 247-255. doi: 10.1038/s41562-020-01044-x. [24] G. A. Wellenius et al., Impacts of social distancing policies on mobility and COVID-19 case growth in the US, Nature Communications 12(1) (2021), 3118. doi: 10.1038/s41467-021-23404-5. [25] R. Garnier, J. R. Benetka, J. Kraemer and S. Bansal, Socioeconomic disparities in social distancing during the COVID-19 pandemic in the United States: observational study, J. Med. Internet Res. 23(1) (2021), e24591 (in English). doi: 10.2196/24591. [26] C. A. Figueroa et al., A text messaging intervention for coping with social distancing during COVID-19 (StayWell at home): protocol for a randomized controlled trial, JMIR Res. Protoc. 10(1) (2021), e23592. doi: 10.2196/23592. [27] S. Arora, J. Debesay and H. Eslen-Ziya, Persuasive narrative during the COVID-19 pandemic: Norwegian Prime Minister Erna Solberg’s posts on Facebook, Humanities and Social Sciences Communications 9(1) (2022), 35. doi: 10.1057/s41599-022-01051-5. [28] R. Paludneviciene, T. Knight, G. Firl, K. Luttrell, K. Takayama and P. Kushalnagar, Perception of COVID-19 physical distancing effectiveness and contagiousness of asymptomatic individuals: cross-sectional survey of deaf and hard of hearing adults in the United States, J. Med. Internet Res. 23(2) (2021), e21103. doi: 10.2196/21103. [29] X. Bai et al., Advancing COVID-19 diagnosis with privacy-preserving collaboration in artificial intelligence, Nature Machine Intelligence 3(12) (2021), 1081-1089. doi: 10.1038/s42256-021-00421-z. [30] EU, EU Digital COVID Certificate, European Commission, 2022. https://ec.europa.eu/info/live-work-travel-eu/coronavirus-response/safe-covid-19-vaccines-europeans/eu-digital-covid-certificate_en. [31] C. K. Kim et al., An automated COVID-19 triage pipeline using artificial intelligence based on chest radiographs and clinical data, npj Digital Medicine 5(1) (2022), 5. doi: 10.1038/s41746-021-00546-w. [32] G. Quer et al., Wearable sensor data and self-reported symptoms for COVID-19 detection, Nature Medicine 27(1) (2021), 73-77. doi: 10.1038/s41591-020-1123-x. [33] M. Gadaleta et al., Passive detection of COVID-19 with wearable sensors and explainable machine learning algorithms, npj Digital Medicine 4(1) (2021), 166. doi: 10.1038/s41746-021-00533-1. [34] D. Çelik Ertuğrul and D. Çelik Ulusoy, A knowledge-based self-pre-diagnosis system to predict Covid-19 in smartphone users using personal data and observed symptoms, Expert Systems 39(3) (2022), e12716. [35] S. Guhathakurata, S. Saha, S. Kundu, A. Chakraborty and J. S. Banerjee, A new approach to predict COVID-19 using artificial neural networks, Cyber-Physical Systems, Elsevier, 2022, pp. 139-160. [36] CDC, Diabetes Fast Facts, Diabetes Basics, 2021. [Online]. Available: https://www.cdc.gov/diabetes/basics/quick-facts.html. [37] WHO, Noncommunicable diseases, Newsroom, 2021. [Online]. Available: https://www.who.int/news-room/factsheets/detail/noncommunicable-diseases. [38] CDC, Heart Disease Facts, Heart Disease Statistics and Maps, 2022. [Online]. Available: https://www.cdc.gov/heartdisease/facts.htm. [39] CDC, Adult Obesity Facts, Overweight and Obesity, 2021. [Online]. Available: https://www.cdc.gov/obesity/data/adult.html. [40] CDC, Fast Facts About Arthritis, Arthritis Basics, 2022. [Online]. Available: https://www.cdc.gov/arthritis/basics/arthritis-fast-facts.html. [41] A. Bryman, Social Research Methods 6E, Oxford University Press, 2021. [42] M. Whitaker et al., Persistent COVID-19 symptoms in a community study of 606,434 people in England, Nature Communications 13(1) (2022), 1957. doi: 10.1038/s41467-022-29521-z. [43] B. Kennedy et al., App-based COVID-19 syndromic surveillance and prediction of hospital admissions in COVID Symptom Study Sweden, Nature Communications 13(1) (2022), 2110. doi: 10.1038/s41467-022-29608-7. [44] J. Fröberg et al., SARS-CoV-2 mucosal antibody development and persistence and their relation to viral load and COVID-19 symptoms, Nature Communications 12(1) (2021), 5621. doi: 10.1038/s41467-021-25949-x.
|