Keywords and phrases: Laplacian polynomial, number of spanning trees, complex network
Received: July 20, 2024; Accepted: September 18, 2024; Published: November 7, 2024
How to cite this article: F. El-Safty and A. W. Aboutahoun, Number of spanning trees of iterated triangulation of a graph, Advances and Applications in Discrete Mathematics 42(1) (2025), 1-16. https://doi.org/10.17654/0974165825001
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References: [1] S. B. B. Altindag, I. Milovanovic and E. Milovanovic, Laplacian coefficients, Kirchhoff index and the number of spanning trees of graphs, Asian-European Journal of Mathematics 17 (2024), ID 2450033. https://doi.org/10.1142/S1793557124500335. [2] T. Atajan and H. Inaba, Network reliability analysis by counting the number of spanning trees, IEEE International Symposium on Communications and Information Technology 1 2004, pp. 601-604. [3] J. A. Bondy and U. S. R. Murty, Graph Theory with Applications, The Macmillan Press Ltd, 1976. [4] T. J. N. Brown, R. B. Mallion, P. Pollak and A. Roth, Some methods for counting the spanning trees in labelled molecular graphs, examined in relation to certain fullerenes, Discrete Appl. Math. 67 (1996), 51-66. [5] D. M. Cvetkovic, M. Doob and H. Sachs, Spectra of Graphs, Academic Press, 1980. [6] J. Ge, Effective resistances and spanning trees in the complete bipartite graph plus a matching, Discrete Appl. Math. 305 (2021), 145-153. [7] I. Gutman, R. B. Mallion and J. W. Essam, Counting the spanning trees of a labeled molecular-graph, Molecular Physics 50 (1983), 859-877. [8] G. Iacobelli, D. R. Figueiredo and V. C. Barbosa, Counting trees with random walks, Expo. Math. 37 (2019), 96-102. [9] A. K. Kelmans and V. M. Chelnokov, Certain polynomials of a graph and graphs with an extremal number of trees, J. Combin. Theory Ser. B 16 (1974), 197-214. [10] G. Kirchhoff, Ueber die Auflosung der Gleichungen, auf welche man bei der Untersuchung der Linearen Ver theilung galvanischer Strome gefuhrt wird, Annelen Der Physik Und Chemie 12 (1847), 497-508. [11] Z. Kosar, S. Zaman, W. Ali and A. Ullah, The number of spanning trees in a K5 chain graph, Phys. Scr. 98 (2023), ID 125239. [12] D. Li and W. Yan, Counting spanning trees with a Kekulé structure in linear hexagonal chains, Appl. Math. Comput. 456 (2023), ID 128125. [13] F. Ma, J. Su, Y. Hao, B. Yao and G. Yan, A class of vertex-edge-growth small-world network models having scale-free, self-similar and hierarchical characters, Phys. A 492 (2018), 1194-1205. [14] F. Ma and B. Yao, An iteration method for computing the total number of spanning trees and its applications in graph theory, Theoret. Comput. Sci. 708 (2018), 46-57. [15] A. S. Mata, Complex networks: a mini-review, Brazilian Journal of Physics 50 (2020), 658-672. [16] R. Mokhlissi, D. Lotfi, J. Debnath and M. El Marraki, Complexity analysis of small-world networks and spanning tree entropy, Complex Networks and their Applications V, H. Cherifi et al. eds., Springer International Publishing, 2017, pp. 197-208. [17] W. Wang, D. Yang and Y. Luo, The Laplacian polynomial and Kirchhoff index of graphs derived from regular graphs, Discrete Appl. Math. 161 (2013), 3063-3071. [18] J. Wei and J. Wang, Spectra of complemented triangulation graphs, Mathematics 10 (2022), ID 3168. [19] P. Xie, Z. Zhang and F. Comellas, On the spectrum of the normalized Laplacian of iterated triangulations of graphs, Appl. Math. Comput. 273 (2016), 1123-1129. [20] F. Z. Zhang, The Schur Complement and its Applications, Springer, 2005.
|