Keywords and phrases: time-fractional telegraph equations, Elzaki transform, exact solutions, convergence analysis
Received: August 10, 2024; Accepted: October 26, 2024; Published: November 4, 2024
How to cite this article: Mona Magzoub, Tarig M. Elzaki and Mourad Chamekh, An innovative method for solving linear and nonlinear fractional telegraph equations, Advances in Differential Equations and Control Processes 31(4) (2024), 651-671. https://doi.org/10.17654/0974324324033
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References [1] J. Biazar and H. Ghazvini, He’s variational iteration method for solving linear and non-linear systems of ordinary differential equations, Appl. Math. Comput. 191 (2007), 287-297. [2] S. A. Khuri and A. Sayfy, A Laplace variational iteration strategy for the solution of differential equations, Appl. Math. Lett. 25 (2012), 2298-2305. [3] E. Hesameddini and H. Latifizadeh, Reconstruction of variational iteration algorithms using the Laplace transform, Int. J. Nonlinear Sci. Numer. Simul. 10(11-12) (2009), 1377-1382. [4] G. C. Wu, Laplace transform overcoming principle drawbacks in application of the variational iteration method to fractional heat equations, Thermal Science 16(4) (2012), 1257-1261. [5] Tarig M. Elzaki, Application of projected differential transform method on nonlinear partial differential equations with proportional delay in one variable, World Applied Sciences Journal 30(3) (2014), 345-349. DOI: 10.5829/idosi.wasj.2014.30.03.1841. [6] Tarig M. Elzaki and J. Biazar, Homotopy perturbation method and elzaki transform for solving system of nonlinear partial differential equations, World Applied Sciences Journal 24(7) (2013), 944-948. DOI: 10.5829/idosi.wasj.2013.24.07.1041. [7] Tarig M. Elzaki, Salih M. Elzaki and Elsayed A. Elnour, On the new integral transform “ELzaki Transform” fundamental properties investigations and applications, Global Journal of Mathematical Sciences: Theory and Practical 4(1) (2012), 1-13. [8] Tarig M. Elzaki and Salih M. Elzaki, On the connections between Laplace and Elzaki transforms, Advances in Theoretical and Applied Mathematics 6(1) (2011), 1-11. [9] Tarig M. Elzaki and Eman M. A. Hilal, Solution of telegraph equation by modified of double Sumudu transform “Elzaki Transform”, Mathematical Theory and Modeling 2(4) (2012), 95-103. [10] Tarig M. Elzaki, Double Laplace variational iteration method for solution of nonlinear convolution partial differential equations, Archives Des Sciences 65(12) (2012), 588-593. [11] Shams A. Ahmed, Tarig M. Elzaki and Anis Mohamed, Solving partial differential equations of fractional order by using a novel double integral transform, Math. Probl. Eng. 2023(2023), 1-12, Article ID 9971083. https://doi.org/10.1155/2023/9971083. [12] Tarig M. Elzaki, Mourad Chamekh and Shams A. Ahmed, Convergence and application of a modified double Laplace transform (MDLT) in some equations of mathematical physics, Advances in Differential Equations and Control Processes 30(2) (2023), 151-168. http://dx.doi.org/10.17654/0974324323010. [13] H. Khan, R. Shah, P. Kumam, D. Baleanu and M. Arif, An efficient analytical technique, for the solution of fractional-order telegraph equations, Mathematics 7(5) (2019), 1-19. doi: 10.3390/math7050426. [14] M. A. Abdou, Adomian decomposition method for solving the telegraph equation in charged particle transport, J. Quant. Spectrosc. Radiat. Transf. 95(3) (2005), 407-414. doi: https://doi.org/10.1016/j.jqsrt.2004.08.045. [15] A. Yıldırım, He’s homotopy perturbation method for solving the space- and time-fractional telegraph equations, Int. J. Comput. Math. 87(13) (2010), 2998-3006. doi: 10.1080/00207160902874653. [16] F. A. Alawad, E. A. Yousif and A. I. Arbab, A new technique of Laplace variational iteration method for solving space-time fractional telegraph equations, Int. J. Differ. Equations 2013 (2013). doi: 10.1155/2013/256593. [17] H. Al-badrani, S. Saleh, H. O. Bakodah and M. Al-Mazmumy, Numerical solution for nonlinear telegraph equation by modified Adomian decomposition method, Nonlinear Anal. Differ. Equations 4(5) (2016), 243-257. doi: 10.12988/nade.2016.6418. [18] V. K. Srivastava, M. K. Awasthi, R. K. Chaurasia and M. Tamsir, The telegraph equation and its solution by reduced differential transform method, Model. Simul. Eng. 2013 (2013). doi: 10.1155/2013/746351. [19] A. Sevimlican, An approximation to solution of space and time fractional telegraph equations by He’s variational iteration method, Math. Probl. Eng. 2010 (2010). doi: 10.1155/2010/290631. [20] A. Saadatmandi and M. Dehghan, Numerical solution of hyperbolic telegraph equation using the Chebyshev tau method, Numer. Methods Partial Differ. Equ. 26(1) (2010), 239-252. doi: doi:10.1002/num.20442. [21] Tarig M. Elzaki and A. A. Ishag, Modified laplace transform and ordinary differential equations with variable coefficients, World Engineering and Applied Sciences Journal 10(3) (2019), 79-84. DOI: 10.5829/idosi.weasj.2019.79.84. [22] Olufemi Elijah Ige, Razaq Adekola Oderinu, Tarig M. Elzaki, Adomian polynomial and ELZAKI transform method for solving Klein Gordon equations, Int. J. Appl. Math. 32(3) (2019), 451-468. doi: http://dx.doi.org/10.12732/ijam.v32i3.7. [23] Aisha Abdullah Alderremy, Tarig M. Elzaki and Mourad Chamekh, Modified Adomian decomposition method to solve generalized Emden-Fowler systems for singular IVP, Math. Probl. Eng. Volume 2019, Article ID 6097095, 6 pages. https://doi.org/10.1155/2019/6097095. [24] Tarig M. Elzaki and A. A. Ishag, Modified Laplace transform and ordinary differential equations with variable coefficients, World Engineering and Applied Sciences Journal 10(3) (2019), 79-84. DOI: 10.5829/idosi.weasj.2019.79.84. [25] Waleed M. Osman, Tarig M. Elzaki and Nagat A. A. Siddig, Modified double conformable Laplace transform and singular fractional pseudo-hyperbolic and pseudo-parabolic equations, Journal of King Saud University – Science 33 (2021) 101378. [26] C. Ike and Tarig M. Elzaki, Elzaki Transform method for natural frequency analysis of Euler-Bernoulli beams, Engineering and Technology Journal (2023), 1-12. doi:10.30684/etj.2023.140211.1456.
|