Keywords and phrases: size-dependent thermo-viscoelastic coupling, generalized thermoelasticity with LS and without energy dissipation (GN-II), polymer micro-rod, fractional calculus
Received: August 1, 2024; Revised: September 25, 2024; Accepted: October 14, 2024; Published: October 25, 2024
How to cite this article: Mohamed H. Hendy, Magdy A. Ezzat, Esraa M. Al-lobani and Ahmed S. Hassan, A problem in fractional order thermo-viscoelasticity theory for a polymer micro-rod with and without energy dissipation, Advances in Differential Equations and Control Processes 31(4) (2024), 583-607. https://doi.org/10.17654/0974324324030
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References: [1] J. L. Nowinski, Theory of Thermoelasticity with Applications, Sijthoff and Noordhoff International Publishers, 1978. [2] M. A. Biot, Thermoelasticity and irreversible thermodynamics, Journal of Applied Physics 27(3) (1956), 240-253. [3] C. Cattaneo, A form of heat conduction equation, which eliminates the paradox of instantaneous propagation, Comptes Rendus 247(3) (1958), 431-433. [4] H. Lord and Y. Shulman, A generalized dynamical theory of thermoelasticity, Journal of the Mechanics and Physics of Solids 15(5) (1967), 299-309. [5] W. Kaminski, Hyperbolic heat conduction equation for materials with a nonhomogeneous inner structure, ASME Journal Heat Transfer 112(3) (1990), 555-560. [6] J. Ignaczak, Uniqueness in generalized thermoelasticity, J. Thermal Stresses 2(2) (1979), 171-175. [7] H. H. Sherief and R. S. Dhalival, A uniqueness theorem and a variational principle for generalized thermoelasticity, J. Thermal Stresses 3(2) (1980), 223-230. [8] M. A. Ezzat and A. S. El-Karamany, The uniqueness and reciprocity theorems for generalized thermoviscoelasticity for anisotropic media, J. Thermal Stresses 25(6) (2002), 507-522. [9] A. Sur, Memory responses in a three-dimensional thermo-viscoelastic medium, Waves Random and Complex Media 32(1) (2022), 137-154. [10] A. E. Green and P. M. Naghdi, Thermoelasticity without energy dissipation, J. Elasticity 31(3) (1993), 189-208. [11] D. S. Chandrasekharaiah, A uniqueness theorem in the theory of thermoelasticity without energy dissipation, J. Thermal Stresses 19(3) (1996), 267-272. [12] A. S. El-Karamany and M. A. Ezzat, Thermal shock problem in generalized thermoviscoelasticity under four theories, Internat. J. Engrg. Sci. 42(7) (2004), 649-671. [13] P. Lata, Effect of energy dissipation on plane waves in sandwiched layered thermoelastic medium, Steel and Composite Structures, International Journal 27(4) (2018), 439-451. [14] P. Lata and I. Kaur, Thermomechanical interactions in transversely isotropic magneto-thermoelastic solid with two temperatures and without energy dissipation, Steel and Composite Structures, International Journal 32(6) (2019), 779-793. [15] M. A. Ezzat, Theory of fractional order in generalized thermoelectric MHD, Applied Mathematical Modelling 35(10) (2011), 4965-4978. [16] M. A. Ezzat, Fractional thermo-viscoelastic response of biological tissue with variable thermal material properties, J. Thermal Stresses 43(9) (2020), 1120-1137. [17] G. Jumarie, Derivation and solutions of some fractional Black-Scholes equations in coarse-grained space and time, application to Merton’s optimal portfolio, Comput. Math. Appl. 59 (2010), 1142-1164. [18] Y. J. Yu, X. G. Tian and J. L. Tian, Fractional order generalized electro-magneto-thermoelasticity, European Journal of Mech. A/Solids 42 (2013), 188-202. [19] M. A. Ezzat and A. A. El-Bary, Unified GN model of electro-thermoelasticity theories with fractional order of heat transfer, Microsystem Technologies 24(12) (2018), 4965-4979. [20] M. A. Ezzat, A. A. El-Bary and M. A. Fayik, Fractional Fourier law with three-phase lag of thermoelasticity, Mechanics of Advanced Materials and Structures 20(8) (2013), 593-602. [21] S. I. El-Attar, M. H. Hendy and M. A. Ezzat, Magneto-thermoelasticity Green-Naghdi theory with memory-dependent derivative in the presence of a moving heat source, Int. J. Advanced and Applied Sciences 9(7) (2022), 33-41. [22] M. M. Amin, M. H. Hendy and M. A. Ezzat, On the memory-dependent derivative electric-thermoelastic wave characteristics in the presence of a continuous line heat source, Int. J. Advanced and Applied Sciences 9(8) (2022), 1-8. [23] X. J. Yang, General Fractional Derivatives: Theory, Methods and Applications, CRC Press, 2019. [24] M. A. Meyers and K. K. Chawla, Mechanical Behavior of Materials, Upper Saddle River, Prentice-Hall, NJ, Vol. 98, 1999, p. 103. [25] M. A. Ezzat, Thermo-mechanical memory responses of biological viscoelastic tissue with variable thermal material properties, Int. J. Numerical Methods for Heat and Fluid Flow 31(1) (2020), 548-569. [26] M. A. Ezzat, Bio-thermo-mechanics behavior in living viscoelastic tissue under the fractional dual-phase-lag theory, Archive of Applied Mechanics 91(9) (2021), 3903-3919. [27] S. F. M. El Sherif, M. A. Ismail, A. A. El-Bary and H. M. Atef, Effect of magnetic field on thermos: viscoelastic cylinder subjected to a constant thermal shock, Int. J. Advanced and Applied Sciences 7(1) (2020), 117-124. [28] X. Shi, M. L. Hassanzadeh-Aghdam and R. Ansari, Viscoelastic analysis of silica nanoparticle-polymer nanocomposites, Composites B 158 (2019), 169-178. [29] K. Eom, H. S. Park, D. S. Yoon and T. Kwon, Nanomechanical resonators and their applications in biological/chemical detection: nanomechanics principles, Physics Reports 503(4/5) (2011), 115-163. [30] L. J. Currano, M. Yu and B. Balachandran, Latching in a MEMS shock sensor: modeling and experiments, Sensors and Actuators A: Physical 159(1) (2010), 41-50. [31] A. Toril, M. Sasaki, K. Hane and S. Okuma, Adhesive force distribution on microstructures investigated by an atomic force microscope, Sensors and Actuators A: Physical 44(2) (1994), 153-158. [32] A. E. Abouelregal and M. Marin, The size-dependent thermoelastic vibrations of nanobeams subjected to harmonic excitation and rectified sine wave heating, Mathematics 8(7) (2020), 1128. [33] Q. Lyu, N. H. Zhang, C. Y. Zhang, J. Z. Wu and Y. C. Zhang, Effect of adsorbate viscoelasticity on dynamical responses of laminated microcantilever resonators, Composites Structures 250 (2020), 112553. [34] M. Sobhy and A. M. Zenkour, The modified couple stress model for bending, of normal deformable viscoelastic nanobeams resting on visco-Pasternak foundations, Mechanics of Advanced Materials and Structures 279(7) (2020), 525-538. [35] M. A. Attia and A. A. Abdel Rahman, On vibrations of functionally graded viscoelastic nanobeams with surface effects, Internat. J. Engrg. Sci. 127 (2018), 1-32. [36] W. Yang and Z. Chen, Nonlocal dual-phase-lag heat conduction and the associated nonlocal thermoviscoelastic analysis, International Journal of Heat and Mass Transfer 156 (2020), 119752. [37] J. D. Ferry, Viscoelastic Properties of Polymers, Wiley, New York, 1970. [38] P. Lata and S. Singh, Effect of nonlocal parameter on nonlocal thermoelastic solid due to inclined load, Steel and Composite Structures 33(1) (2019), 955-963. [39] M. A. Ezzat, S. M. Ezzat and M. Y. Alkhrraz, State-space approach to nonlocal thermo-viscoelastic piezoelectric materials with fractional dual-phase lag heat transfer, Int. J. Numerical Methods for Heat and Fluid Flow 32(12) (2022), 3726-3750. [40] A. A. Hassaballa, M. H. Hendy and M. A. Ezzat, A modified Green-Naghdi fractional-order model for analyzing thermoelectric semispace heated by a moving heat source, Mechanics of Time-Dependent Materials 28 (2024), 1815-1837. [41] B. Gross, Mathematical Structure of the Theories of Viscoelasticity, Hermann, Paris, France, 1953. [42] G. Honig and U. Hirdes, A method for the numerical inversion of the Laplace transform, J. Comput. Appl. Math. 10(1) (1984), 113-132. [43] M. A. Ezzat, The relaxation effects of the volume properties of electrically conducting viscoelastic material, Mat. Sci. Eng. B 130(1/3) (2006), 11-23. [44] H. H. Sherief and A. M. Abd El-Latief, Effect of variable thermal conductivity on a half-space under the fractional order theory of thermoelasticity, Int. J. Mech. Sci. 74(9) (2013), 185-189. [45] H. Guo, L. Yaning, C. Li and T. He, Structural dynamic responses of layer-by-layer viscoelastic sandwich nanocomposites subjected to time-varying symmetric thermal shock loadings based on nonlocal thermo-viscoelasticity theory, Microsys. Tech. 28(5) (2022), 1143-1165.
|