Keywords and phrases: sixth-order Cahn-Hilliard system with temperature, well-posedness, dissipativity, global attractor, exponential attractor.
Received: March 21, 2024; Accepted: May 10, 2024; Published: October 17, 2024
How to cite this article: Armel Judice Ntsokongo, Narcisse Batangouna and Dieudonné Ampini, On a sixth-order Cahn-Hilliard system with temperature, Far East Journal of Dynamical Systems 37(2) (2024), 205-231. https://doi.org/10.17654/0972111824009
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References: [1] F. Chen and J. Shen, Efficient energy stable schemes with spectral discretization in space for anisotropic Cahn-Hilliard systems, Commun. Comput. Phys. 13(5) (2013), 1189-1208. [2] J. W. Cahn and J. E. Hilliard, Free energy of a nonuniform system. I. interfacial free energy, J. Chem. Phys. 28(2) (1958), 258-267. [3] G. Caginalp, Conserved-phase field system: Implications for kinetic undercooling, Phys. Rev. B. 38 (1988), 789-791. [4] V. Chalupecki, Numerical studies of Cahn-Hilliard equations and applications in image processing, in Proceedings of Czech-Japanese Seminar in Applied Mathematics, Czech Technical University in Prague, 2004. [5] G. Brochet, X. Chen and D. Hilhorst, Finite dimensional exponential attractors for the phase-field model, Appl. Anal. 49 (1993), 197-212. [6] L. Cherfils and A. Miranville, Some results on the asymptotic behavior of the Caginalp system with singular potentials, Adv. Math. Sci. Appl. 17 (2007), 107 129. [7] D. Cohen and J. M. Murray, A generalized diffusion model for growth and dispersion in a population, J. Math. Biol. 12 (1981), 237-249. [8] A. Miranville, Some mathematical models in phase transition, Discrete Contin. Dyn. Systems Seres S. 7 (2014), 271-306. [9] A. Miranville and R. Quintanilla, A generalization of the Caginalp phase-field system based on the Cattaneo law, Nonlinear Analysis 71 (2009), 2278-2290. [10] A. Miranville and R. Quintanilla, A conserved phase-field system based on the Maxwell-Cattaneo law, Nonlinear Analysis: Real World Applications 14 (2013), 1680-1692. [11] A. Miranville and S. Zelik, Attractors for dissipative partial differential equations in bounded and unbounded domains, in Handbook of Differential Equations, Evolutionary Partial Differential Equations, Vol. 4, C. M. Dafermos, M. Pokorny, eds., Elsevier, Amsterdam, 2008, 103-200. [12] A. Miranville and S. Zelik, Robust exponential attractors for Cahn-Hilliard type equations with singular potentials, Math. Methods Appl. Sci. 27 (2004), 545-582. [13] A. Miranville and A. J. Ntsokongo, On anisotropic Caginalp phase-field type models with singular nonlinear terms, J. Appl. Anal. Comput. 8 (2018), 655-674. [14] A. J. Ntsokongo, On higher-order anisotropic Caginalp phase-field systems with polynomial nonlinear terms, J. Appl. Anal. Comput. 7 (2017), 992-1012. [15] A. J. Ntsokongo and C. Tathy, Long-time behavior of the higher-order anisotropic Caginalp phase-field systems based on the Maxwell-Cattaneo law, Asymptotic Analysis 128 (2022), 1-30. [16] A. J. Ntsokongo and F. D. R. Langa, Well-posedness and the global attractor of the higher-order anisotropic conservative Caginalp phase-field systems based on the Maxwell-Cattaneo law, Advances in Mathematical Sciences and Applications 32(1) (2023), 135-154. [17] A. J. Ntsokongo, Asymptotic behavior of an Allen-Cahn type equation with temperature, Discrete Contin. Dynam. Systems 16(9) (2023), 2452-2466. [18] A. Makki and A. Miranville, Well-posedness for one-dimensional anisotropic Cahn-Hilliard and Allen-Cahn systems, Electron. J. Diff. Eqns. 2015(4) (2015), 1 15. [19] G. Schimperna and I. Pawłow, A Cahn-Hilliard equation with singular diffusion, J. Differential Equations 254(2) (2013), 779-803. [20] S. M. Wise, C. Wang and J. S. Lowengrub, An energy-stable and convergent finite-difference scheme for the phase field crystal equation, SIAM J. Numer. Anal. 47(3) (2009), 2269-2288. [21] A. Oron, S. H. Davis and S. G. Bankoff, Long-scale evolution of thin liquid films, Rev. Mod. Phys. 69 (1997), 931-980. [22] I. Klapper and J. Dockery, Role of cohesion in the material description of biofilms, Phys. Rev. E 74 (2006), 0319021. [23] S. Tremaine, On the origin of irregular structure in Saturn’s rings, Astron. J. 125 (2003), 894-901. [24] G. Giacomin and J. L. Lebowitz, Phase segregation dynamics in particle systems with long range interaction I. Macroscopic limits, J. Statist. Phys. 87 (1997), 37 61. [25] R. Temam, Infinite-dimensional Dynamical Systems in Mechanics and Physics, 2nd ed., Vol. 68, Applied Mathematical Sciences, New York (NY), Springer-Verlag, 1997. [26] M. Efendiev, A. Miranville and S. Zelik, Exponential attractors for a nonlinear reaction-diffusion system in C. R. Acad. Sci. Paris Série I Math. 330 (2000), 713-718. [27] A. Eden, C. Foias, B. Nicolaenko and R. Temam, Exponential Attractors for Dissipative Evolution Equations, Research in Applied Mathematics, Vol. 37, John-Wiley, New York, 1994.
|