Keywords and phrases: y-Caputo derivative, fractional nonlinear Riccati differential equation, Adomian decomposition method, semi-analytical method.
Received: August 4, 2024; Revised: August 22, 2024; Accepted: August 31, 2024; Published: September 25, 2024
How to cite this article: Asrar Saleh Alsulami, Mariam Al-Mazmumy, Maryam Ahmed Alyami and Mona Alsulami, Application of Adomian decomposition method to a generalized fractional Riccati differential equation (y-FRDE), Advances in Differential Equations and Control Processes 31(4) (2024), 531-561. https://doi.org/10.17654/0974324324028
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References: [1] J. H. He, Fractal calculus and its geometrical explanation, Results in Physics 10 (2018), 272-276. DOI: 10.1016/j.rinp.2018.06.011. [2] H. Sun, Z. Li, Y. Zhang and W. Chen, Fractional and fractal derivative models for transient anomalous diffusion: Model comparison, Chaos, Solitons and Fractals 102 (2017), 346-353. DOI: 10.1016/j.chaos.2017.03.060. [3] K. Hattaf, On the stability and numerical scheme of fractional differential equations with application to biology, Computation 10(6) (2022), 97. DOI: 10.3390/computation10060097. [4] H. Sun, A. Chang, Y. Zhang and W. Chen, A review on variable-order fractional differential equations: mathematical foundations, physical models, numerical methods and applications, Fractional Calculus and Applied Analysis 22(1) (2019), 27-59. DOI: 10.1515/fca-2019-0003. [5] G. S. Teodoro, J. T. Machado and E. C. De Oliveira, A review of definitions of fractional derivatives and other operators, Journal of Computational Physics 388 (2019), 195-208. DOI: 10.1016/j.jcp.2019.03.008. [6] C. Milici, G. Draganescu and J. T. Machado, Introduction to Fractional Differential Equations, 25, Springer, 2018. [7] A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, 204, Elsevier, 2006. DOI: 10.1016/S0304-0208(06)80001-0. [8] P. Agarwal, Q. Al-Mdallal, Y. J. Cho and S. Jain, Fractional differential equations for the generalized Mittag-Leffler function, Advances in Difference Equations 2018 (2018), 1-8. DOI: 10.1186/s13662-018-1500-7. [9] P. Agarwal, F. Qi, M. Chand and G. Singh, Some fractional differential equations involving generalized hypergeometric functions, Journal of Applied Analysis 25(1) (2019), 37-44. DOI: 10.1515/jaa-2019-0004. [10] R. Almeida, A Caputo fractional derivative of a function with respect to another function, Communications in Nonlinear Science and Numerical Simulation 44 (2017), 460-481. DOI: 10.1016/j.cnsns.2016.09.006. [11] O. K. Wanassi and D. F. Torres, An integral boundary fractional model to the world population growth, Chaos, Solitons and Fractals 168 (2023), 113151. DOI: 10.1016/j.chaos.2023.113151. [12] R. Almeida, A. B. Malinowska and M. T. T. Monteiro, Fractional differential equations with a Caputo derivative with respect to a kernel function and their applications, Mathematical Methods in the Applied Sciences 41(1) (2018), 336-352. DOI: 10.1002/mma.4617. [13] R. Almeida, What is the best fractional derivative to fit data?. Applicable Analysis and Discrete Mathematics 11(2) (2017), 358-368. DOI: 10.48550/arXiv.1704.00609. [14] M. S. Abdo, S. K. Panchal and A. M. Saeed, Fractional boundary value problem with -Caputo fractional derivative, Proceedings-Mathematical Sciences 129(5) (2019), 65. [15] S. Bittanti, P. Colaneri and G. Guardabassi, Periodic solutions of periodic Riccati equations, IEEE Transactions on Automatic Control 29(7) (1984), 665-667. [16] I. Lasiecka and R. Triggiani, (Eds.), Differential and Algebraic Riccati Equations With Application to Boundary/Point Control Problems: Continuous Theory and Approximation Theory, Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. [17] Y. Öztürk, A. Anapali, M. Gülsu and M. Sezer, A collocation method for solving fractional Riccati differential equation, Journal of Applied Mathematics 2013(1) (2013), 598083. [18] M. Merdan, On the solutions fractional Riccati differential equation with modified Riemann-Liouville derivative, International Journal of Differential Equations 2012(1) (2012), 346089. [19] X. Liu, Kamran and Y. Yao, Numerical approximation of Riccati fractional differential equation in the sense of Caputo-type fractional derivative, Journal of Mathematics 2020 (2020), 1-12. [20] M. M. Khader, N. H. Sweilam and B. N. Kharrat, Numerical simulation for solving fractional Riccati and logistic differential equations as a difference equation, Applications and Applied Mathematics: An International Journal (AAM) 15(1) (2020), 37. [21] B. S. Kashkari and M. I. Syam, Fractional-order Legendre operational matrix of fractional integration for solving the Riccati equation with fractional order, Applied Mathematics and Computation 290 (2016), 281-291. [22] Z. Odibat and S. Momani, Modified homotopy perturbation method: application to quadratic Riccati differential equation of fractional order, Chaos, Solitons and Fractals 36(1) (2008), 167-174. [23] Ş. Yüzbaşi, Numerical solutions of fractional Riccati type differential equations by means of the Bernstein polynomials, Applied Mathematics and Computation 219(11) (2013), 6328-6343. [24] H. S. Patel and R. Meher, Analytical investigation of Jeffery-Hamel flow by modified Adomian decomposition method, Ain Shams Engineering Journal 9(4) (2018), 599-606. [25] H. Thabet and S. Kendre, New modification of Adomian decomposition method for solving a system of nonlinear fractional partial differential equations, Int. J. Adv. Appl. Math. Mech. 6(3) (2019), 1-13. [26] S. Masood, Hajira, H. Khan, R. Shah, S. Mustafa, Q. Khan, M. Arif, F. Tchier and G. Singh, A new modified technique of Adomian decomposition method for fractional diffusion equations with initial-boundary conditions, Journal of Function Spaces 2022(1) (2022), 6890517. [27] Y. Cherruault, Convergence of Adomian’s method, Kybernetes 18(2) (1989), 31 38. [28] Y. Cherruault and G. Adomian, Decomposition methods: a new proof of convergence, Mathematical and Computer Modelling 18(12) (1993), 103-106. [29] N. Himoun, K. Abbaoui and Y. Cherruault, New results of convergence of Adomian’s method, Kybernetes 28(4) (1999), 423-429. [30] K. Abbaoui and Y. Cherruault, Convergence of Adomian’s method applied to differential equations, Computers and Mathematics with Applications 28(5) (1994), 103-109. [31] A. M. Wazwaz and S. M. El-Sayed, A new modification of the Adomian decomposition method for linear and nonlinear operators, Applied Mathematics and Computation 122(3) (2001), 393-405. [32] A. Ali and T. Minamoto, A new numerical technique for solving ψ-fractional Riccati differential equations, Journal of Applied Analysis and Computation 13(2) (2023), 1027-1043. DOI: 10.11948/20220318. [33] F. M. Alharbi, A. M. Zidan, M. Naeem, R. Shah and K. Nonlaopon, Numerical investigation of fractional-order differential equations via ψ-Haar-Wavelet method, Journal of Function Spaces 2021(1) (2021), 3084110.
|