Keywords and phrases: general symmetric degree adjacency of G, general symmetric degree of G, characteristic polynomial of GSDA(G) and GSD(G), GSDA(G) and GSD(G)-eigenvalues, Ea(G), Eg(G).
Received: February 14, 2024; Revised: September 14, 2024; Accepted: October 1, 2024; Published: October 16, 2024
How to cite this article: Jyoti Macha, Sumedha S. Shinde and Prema Sunkad, The general symmetric degree and general symmetric degree adjacency polynomial of a graph and its energy, Advances and Applications in Discrete Mathematics 41(8) (2024), 641-661. https://doi.org/10.17654/0974165824041
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References:
[1] M. Aouchiche and P. Hansen, Distance spectra of graphs: a survey, Linear Algebra Appl. 458 (2014), 301-386. [2] K. Balasubramanian, The use of Frame’s method for the characteristic polynomials of chemical graphs, Theoret. Chim. Acta 65 (1984), 49-58. [3] R. B. Bapat, Graphs and Matrices, Springer, London, Dordrecht, Heidelberg, New York, 2014. [4] B. Basavanagoud and E. Chitra, Degree square sum polynomial of some special graphs, International Journal of Applied Engineering Research 13 (2018), 14060-14078. [5] S. Barnard and J. M. Child, Higher Algebra, Macmillan, New York, 1959. [6] S. Y. Cui and G. X. Tian, The spectrum and the signless Laplacian spectrum of coronae, of graphs, Linear Algebra Appl. 437 (2012), 1692-1703. [7] D. Cvetkovic, M. Doob and H. Sachs, Spectra of Graphs: Theory and Applications, Academic Press, New York, 1980. [8] Gholam Hossein Fath-Tabar and Ali Reza Ashrafi, Some remarks on Laplacian eigenvalues and Laplacian energy of graphs, Math. Commun. 15(2) (2010), 443-451. [9] I. Gutman, The energy of a graph, Ber. Math. Stat. Sekt. Forschungsz. Graz 103 (1978), 1-22. [10] I. Gutman and J. Shao, The energy change of weighted graph, Linear Algebra Appl. 435 (2011), 2425-2431. [11] I. Gutman and O. E. Polansky, Mathematical Concepts in Organic Chemistry, Springer-Verlag, Berlin, 1986. [12] I. Gutman and N. Trinajstic, Graph theory and molecular orbitals, total -electron energy of alternate hydrocarbons, Chem. Phys. Lett. 17 (1972), 535-538. [13] I. Gutman and B. Zhou, Laplacian energy of a graph, Linear Algebra Appl. 414 (2006), 29-37. [14] F. Harary, Graph Theory, Addison-Wesley, Reading, Mass, 1969. [15] I. Z. Milovanovic, E. I. Milovanovic and A. Zakic, A short note on graph energy, MATCH Commun. Math. Comput. Chem. 72 (2014), 179-182. [16] H. S. Ramane, D. S. Revankar and J. B. Patil, Bounds for the degree sum eigenvalues and degree sum energy of a graph, Int. J. Pure Appl. Math. Sci. 6 (2013), 161-167. [17] H. S. Ramane, K. C. Nandeesh, G. A. Gudodagi and B. Zhou, Degree subtraction eigenvalues and energy of degree of graph, Computer Science Journal of Moldova 26(2)(77) (2018), 146-162. [18] Sumedha S. Shinde and Jyoti Macha, Degree exponent subtraction energy, Advances in Mathematics: Scientific Journal 9 (2020), 9137-9148. [19] Sumedha S. Shinde and Jyoti Macha, Degree square subtraction spectra and energy, J. Indones. Math. Soc. 28(3) (2022), 259-271. [20] Sumedha S. Shinde, Jyoti Macha and H. S. Ramane, Bounds for Sombor eigenvalue and energy of a graph in terms of hyper Zagreb and Zagreb indices, Palestine Journal of Mathematics 13(1) (2024), 100-108. [21] Sumedha S. Shinde, Jyoti Macha and Shreekant Patil, General Degree Subtraction Spectra and Energy, Palestine Journal of Mathematics 13(3) (2024) 59-74. [22] L. Spialter, The atom connectivity matrix (ACM) and its characteristic polynomial (ACMCP), J. Chem. Doc. 4 (1964), 269-274. [23] J. Michael Steele, The Cauchy-Schwarz Master Class: An Introduction to the Art of Mathematical Inequalities, Cambridge University Press, 2004. [24] Z. Radova, Applications of graph spectra, Matematicki institut SANU, 2009.
|