Keywords and phrases: compressed earth blocks, hot ring method, thermal conductivity, cement, water, technico-economic optimum (TEO).
Received: July 21, 2024; Accepted: September 2, 2024; Published: October 3, 2024
How to cite this article: N. Zakham, I. Aberdane, K. Bouassria, N. Elhadrati, S. Nasla, Y. El Rhaffari, M. Cherraj, H. Bouabid, A. Samaouali and Wassim Gueraoui, Technico-economic optimum value of the thermal behavior of the compressed earth block stabilized with mutual effect of water and cement contents, JP Journal of Heat and Mass Transfer 37(5) (2024), 641-665. https://doi.org/10.17654/0973576324041
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References: [1] P. Meukam, Y. Jannot, A. Noumowe and T. C. Kofane, Thermo physical characteristics of economical building materials, Construction and Building Materials 18 (2004), 437-443. [2] S. Nasla et al., Technical studies of adobe bricks stabilize with lime from the quarry of the commune of Had Laghoualem in Morocco, International Journal on Engineering Applications 9(1) (2021), 1-7. [3] Abdellah Mellaikhafia, Amine Tiliouaa, Hanène Soulib, Mohammed Garoumc and Moulay Ahmed Alaoui Hamdid, Characterization of different earthen construction materials in oasis of south-eastern Morocco (Errachidia Province), Case Studies in Construction Materials 14 (2021), e00496. [4] M. Kheltent, S. Nasla, Y. El Maatoufi, M. Laatar, H. Lbakhkhouch, K. Gueraoui and M. Cherraj, Experimental comparison for physical and thermal characterization of compressed earth block reinforced with fibers and block reinforced with cork aggregates, JP Journal of Heat and Mass Transfer 37(1) (2024), 111-126. [5] Moro Olivier Boffoue, Koffi Clément Kouadio, Conand Honoré Kouakou, Aka Alexandre Assande, Anne Dauscher, Bertrand Lenoir and Edjikemé Emeruwa, Influence de la teneur en ciment sur les propriétés thermomécaniques des blocs d’argile comprimée et stabilisée, Afrique SCIENCE 11(2) (2015), 35-43. [6] S. Nasla, K. Gueraoui, M. Cherraj, A. Samaouali, E. Nchiti, Y. Jamil, O. Arab and K. Bougtaib, An experimental study of the effect of pine needles and straw fibers on the mechanical behavior and thermal conductivity of adobe earth blocks with chemical analysis, JP Journal of Heat and Mass Transfer 23(1) (2021), 35-56. [7] Y. Jamil, S. Nasla, K. Bougtaib, K. Gueraoui and M. Cherraj, The influence of compaction stress and alfa fiber content on the physico-chemical characterization of compressed earth blocks (CEB), JP Journal of Heat and Mass Transfer 24(2) (2021), 265-282. [8] H. Benouali, A. Brara, M. Mahdad and F. Mokhtari, Caractérisation thermophysique et suivi thermique de deux bâtisses réalisées en blocs de terre comprimée, Dans Annales du bâtiment et des travaux publics 86(16) (2011), 8-14. [9] Souhaila Boussaid, Abderrahman El Bakkouri, Hassan Ezbakhe, Taib Ajzoul and Abdelmajid El Bouardi, Comportement thermique de la terre stabilisée au ciment, Revue Française de Génie Civil 5(4) (2001), 505-515. [10] M. Laatar, S. Nasla, H. Lbakhkhouch, M. Kheltent, K. Gueraoui and M. Cherraj, Analyzing effects of different dosages of cement and date palm fiber lengths on the mechanical and thermal characteristics of compressed earth blocks, JP Journal of Heat and Mass Transfer 37(2) (2024), 201-216. [11] NF P94 005, Analyse Granulométrique des Sols, Méthode par Tamisage’, 1992. [12] NF P94 068, ‘Mesure de la quantité et de l’activité de la fraction argileuse, essai à la tache’, 1993. [13] Blocs de terre comprimée, procédure d’essais, Série Technologique N° 16, Essai au bleu de Méthylène, CRATerre-EAG, CDE, ENTPE, 2000, pp. 45-48. [14] Roman Christopher Kerschbaumer et al., Comparison of steady-state and transient thermal conductivity testing methods using different industrial rubber compounds, Polymer Testing 80 (2019), 106121. [15] Oluseyi Olajide, The application of modified McKenzie Lithospheric stretching concept to 1D, 2D, and 3D petroleum systems modelling within the Saskatchewan portion of the Williston basin, The University of Regina (Canada), 2018. [16] Prabal Talukdar, Heat conduction equation, Department of Mechanical Engineering, IIT Delhi, 2001. [17] Yunus A. Cengel, Heat Transfer: A Practical Approach, 2nd ed., McGraw-Hill, 1998. [18] A. Demhati, Contribution à l’étude de corrélations et de l’utilité de paramètres de l’identification des terres, Rev. Mar. de Génie Civil, Avr. 92, pp. 27-38. [19] A. Guettala and M. Guenfoud, Influence des types d’argiles sur les propriétés physico-mécaniques du béton de terre stabiliséem au ciment Annales du ITBTP, 1998, pp. 15-25. [20] Nicasio Lozano, Factors influencing the flexibility of compacted clay liners, The University of Mississippi, 1994. [21] Daniel Ribeiro, Raquel Néri and Rafaela Cardoso, Influence of water content in the UCS of soil-cement mixtures for different cement dosages, International Conference on Transportation Geotechnics (ICTG 2016), Procedia Engineering 143 (2016), 59-66. [22] Florence Collet, Measurement of thermal conductivity of bio-based building materials, Laboratoire de Génie Civil et Génie Mécanique (EA 3913), Equipe Matériaux Thermo Rhéologie, Université de Rennes 1, 2017. [23] H. Bouabid, Contribution à l’étude du comportement rhéologique du bloc de terre comprimée et du mortier de terre stabilisée – Proposition d’un optimum Technico Economique, Thèse de Doctorat d’Etat, Université Mohamed V. (Rabat), 2000. [24] Mohammed CHERRAJ, Valorisation des matériaux locaux : Un modèle numérique d’évaluation des caractéristiques mécanique du BTC et du mortier en fonction de la stabilisation en compactage et/ou en ciment, Thèse de doctorat, Université Mohamed V – Agdal, 2008. [25] H. Bouabid, S. Charif d’ouazzane and O. Fassi-Fehri, Proposition et validation d’un modèle de prévision de l’évolution des propriétés mécaniques du matériau terre (bloc, mortier) en fonction du dosage en ciment et/ou de l’effort de compactage, Rapport Interne, CRR-Bâtiment, LPEE, Casablanca, 1998.
|