Keywords and phrases: solar chimney (SC), applications of SC, modifications of SC, comparison of SC
Received: May 15, 2024; Revised: July 25, 2024; Accepted: August 14, 2024; Published: October 3, 2024
How to cite this article: Tapas Kumar Panda, Mukundjee Pandey, Ardhendu Mouli Mohanty, Ipsita Mishra and Madhusudan Pandey, Revolutionizing solar chimneys in harvesting clean energy: a review, JP Journal of Heat and Mass Transfer 37(5) (2024), 575-600. https://doi.org/10.17654/0973576324038
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References:
[1] M. Pandey, B. N. Padhi and I. Mishra, Performance analysis of a waste heat recovery solar chimney for nocturnal use, Engineering Science and Technology an International Journal 24(1) (2021), 1-10. https://doi.org/10.1016/j.jestch.2020.11.009. [2] O. K. Ahmed, S. Algburi, Z. H. Ali, A. K. Ahmed and H. N. Shubat, Hybrid solar chimneys - a comprehensive review, Energy Reports 8 (2022), 438-460. https://doi.org/10.1016/j.egyr.2021.12.007. [3] A. Azad, E. Aghaei, A. Jalali and P. Ahmadi, Multi-objective optimization of a solar chimney for power generation and water desalination using neural network, Energy Conversion and Management 238 (2021), 114152. https://doi.org/10.1016/j.enconman.2021.114152. [4] C. J. Xamán, J. Xamán, M. G. Rivera, I. Z. Guillén, F. N. Pat and E. Simá, Assessing the thermal performance of a rooftop solar chimney attached to a single room, Journal of Building Engineering 31 (2020), 101380. https://doi.org/10.1016/j.jobe.2020.101380. [5] A. P. Singh, A. Kumar, Akshayveer and O. P. Singh, A novel concept of integrating bell-mouth inlet in converging-diverging solar chimney power plant, Renewable Energy 169 (2021), 318-334. https://doi.org/10.1016/j.renene.2020.12.120. [6] D. M. Aliaga, R. Feick, W. K. Brooks, M. Mery, R. Gers, J. F. Levi and C. P. Romero, Modified solar chimney configuration with a heat exchanger: Experiment and CFD simulation, Thermal Science and Engineering Progress 22 (2021), 100850. https://doi.org/10.1016/j.tsep.2021.100850. [7] T. Long, N. Zhao, W. Li, S. Wei, Y. Li, J. Lu, S. Huang and Z. Qiao, Numerical simulation of diurnal and annual performance of coupled solar chimney with earth-to-air heat exchanger system, Applied Thermal Engineering 214 (2022), 118851. https://doi.org/10.1016/j.applthermaleng.2022.118851. [8] M. J. S. López, A. M. B. Marigorta, A. J. G. Trashorras, J. P. Favero and E. B. Marigorta, Numerical simulation and exergetic analysis of building ventilation solar chimneys, Energy Conversion and Management 96 (2015), 1-11. https://doi.org/10.1016/j.enconman.2015.02.049. [9] P. H. Guo, J. Y. Li and Y. Wang, Numerical simulations of solar chimney power plant with radiation model, Renewable Energy 62 (2014), 24-30. https://doi.org/10.1016/j.renene.2013.06.039. [10] S. H. Fallah and M. S. Valipour, Numerical investigation of a small scale sloped solar chimney power plant, Renewable Energy 183 (2022), 1-11. https://doi.org/10.1016/j.renene.2021.10.081. [11] H. Xue and M. Esmaeilpour, Power generation using solar energy: the effect of curved-guide vanes on the performance of a turbine in a solar chimney power plant, Solar Energy 247 (2022), 468-484. https://doi.org/10.1016/j.solener.2022.10.052. [12] J. Gong, K. X. Cheng, H. Liu, L. W. Chew and P. S. Lee, A novel staggered split absorber design for enhanced solar chimney performance, Building and Environment 224 (2022), 109569. https://doi.org/10.1016/j.buildenv.2022.109569. [13] L. Zuo, P. Dai, Z. Yan, C. Li, Y. Zheng and Y. Ge, Design and optimization of turbine for solar chimney power plant based on lifting design method of axial-flow hydraulic turbine impeller, Renewable Energy 171 (2021), 799-811. https://doi.org/10.1016/j.renene.2021.02.121. [14] I. Bosu, H. Mahmoud, S. Ookawara and H. Hassan, Applied single and hybrid solar energy techniques for building energy consumption and thermal comfort: a comprehensive review, Solar Energy 259 (2023), 188-228. https://doi.org/10.1016/j.solener.2023.05.006. [15] R. Khanal and C. Lei, Solar chimney - a passive strategy for natural ventilation, Energy and Buildings 43(8) (2011), 1811-1819. https://doi.org/10.1016/j.enbuild.2011.03.035. [16] S. K. Pathak, V. V. Tyagi, K. Chopra, R. Rejikumar and A. K. Pandey, Integration of emerging PCMs and nano-enhanced PCMs with different solar water heating systems for sustainable energy future: a systematic review, Solar Energy Materials and Solar Cells 254 (2023), 112237. https://doi.org/10.1016/j.solmat.2023.112237. [17] M. H. Huanga, L. Chena, L. Leia, P. Hea, J. J. Caoc, Y. L. Hea, Z. P. Feng and W. Q. Tao, Experimental and numerical studies for applying hybrid solar chimney and photovoltaic system to the solar-assisted air cleaning system, Applied Energy 269 (2020), 115150. https://doi.org/10.1016/j.apenergy.2020.115150. [18] Y. Sheikhnejad and S. A. G. Nassab, Enhancement of solar chimney performance by passive vortex generator, Renewable Energy 169 (2021), 437-450. https://doi.org/10.1016/j.renene.2021.01.026. [19] A. T. Layeni, M. A. Waheed, B. A. Adewumi, B. O. Bolaji, C. N. Nwaokocha and S. O. Giwa, Computational modelling and simulation of the feasibility of a novel dual purpose solar chimney for power generation and passive ventilation in buildings, Scientific African 8 (2020), e00298. https://doi.org/10.1016/j.sciaf.2020.e00298. [20] H. Zhang, Y. Tao, G. Zhang, J. Li, S. Setunge and L. Shi, Impacts of storey number of buildings on solar chimney performance: a theoretical and numerical approach, Energy 261 (2022), 125200. https://doi.org/10.1016/j.energy.2022.125200. [21] P. Rahdan, A. Kasaeian and W. M. Yan, Simulation and geometric optimization of a hybrid system of solar chimney and water desalination, Energy Conversion and Management 243 (2021), 114291. https://doi.org/10.1016/j.enconman.2021.114291. [22] C. Méndez and Y. Bicer, Integrated system based on solar chimney and wind energy for hybrid desalination via reverse osmosis and multi-stage flash with brine recovery, Sustainable Energy Technologies and Assessments 44 (2021), 101080. https://doi.org/10.1016/j.seta.2021.101080. [23] Q. Hu, X. Wang, A. Gamil and P. Li, Experimental study of desalination using a system integrated by a glass-covered solar collection water basin and a heat dissipating chimney, Energy Nexus 9 (2023), 100171. https://doi.org/10.1016/j.nexus.2023.100171. [24] M. Abedi, X. Tan, J. F. Klausner and A. Bénard, Solar desalination chimneys: investigation on the feasibility of integrating solar chimneys with humidification-dehumidification systems, Renewable Energy 202 (2023), 88-102. https://doi.org/10.1016/j.renene.2022.11.069. [25] A. Salari, M. Ashouri and A. H. Fard, On the performance of inclined rooftop solar chimney integrated with photovoltaic module and phase change material: a numerical study, Solar Energy 211 (2020), 1159-1169. https://doi.org/10.1016/j.solener.2020.10.064. [26] M. S. B. Jahromi, V. Kalantar, H. S. Akhijahani, H. Kargarsharifabad and S. Shoeibi, Performance analysis of a new solar air ventilator with phase change material: numerical simulation, techno-economic and environmental analysis, Journal of Energy Storage 62 (2023), 106961. https://doi.org/10.1016/j.est.2023.106961. [27] Y. Cao, S. Pourhedayat, H. S. Dizaji and M. Wae-hayee, A comprehensive optimization of phase change material in hybrid application with solar chimney and photovoltaic panel for simultaneous power production and air ventilation, Building and Environment 197 (2021), 107833. https://doi.org/10.1016/j.buildenv.2021.107833. [28] A. A. M. Omara, H. A. Mohammed, I. J. A. Rikabi, M. A. Abuelnour and A. A. A. Abuelnuor, Performance improvement of solar chimneys using phase change materials: a review, Solar Energy 228 (2021), 68-88. https://doi.org/10.1016/j.solener.2021.09.037. [29] R. B. Weli, S. A. Atrooshi and R. Schwarze, Investigation of the performance parameters of a sloped collector solar chimney model - an adaptation for the north of Iraq, Renewable Energy 176 (2021), 504-519. https://doi.org/10.1016/j.renene.2021.05.075. [30] E. H. I. Cisse, A. Thiam, B. A. Ndiogou, D. Azilinon and V. Sambou, Experimental investigation of solar chimney with concentrated collector (SCCC), Case Studies in Thermal Engineering 35 (2022), 101965. https://doi.org/10.1016/j.csite.2022.101965. [31] L. Rezaei, S. Saeidi, A. Sápi, M. R. A. Senoukesh, G. Gróf, W.-H. Chen, Z. Kónya and J. J. Klemeš, Efficiency improvement of the solar chimneys by insertion of hanging metallic tubes in the collector: experiment and computational fluid dynamics simulation, Journal of Cleaner Production 415 (2023), 137692. https://doi.org/10.1016/j.jclepro.2023.137692. [32] M. Saad, N. Ahmed, M. Mahmood and M. B. Sajid, Performance enhancement of solar updraft tower plant using parabolic chimney profile configurations: a numerical analysis, Energy Reports 8 (2022), 4661-4671. https://doi.org/10.1016/j.egyr.2022.03.134. [33] M. A. Aziz and A. M. Elsayed, Thermofluid effects of solar chimney geometry on performance parameters, Renewable Energy 200 (2022), 674-693. https://doi.org/10.1016/j.renene.2022.10.022. [34] S. Mehranfar, A. Gharehghani, A. Azizi, A. M. Andwari, A. Pesyridis and H. Jouhara, Comparative assessment of innovative methods to improve solar chimney power plant efficiency, Sustainable Energy Technologies and Assessments 49 (2022), 101807. https://doi.org/10.1016/j.seta.2021.101807. [35] D. K. Mandal, N. Biswas, A. Barman, R. Chakraborty and N. K. Manna, A novel design of absorber surface of solar chimney power plant (SCPP): thermal assessment, exergy and regression analysis, Sustainable Energy Technologies and Assessments 56 (2023), 103039. https://doi.org/10.1016/j.seta.2023.103039. [36] H. Kebabsa and M. S. Lounici, Performance evaluation of the combined solar chimney-photovoltaic system in Algeria, Journal of Cleaner Production 321 (2021), 128628. https://doi.org/10.1016/j.jclepro.2021.128628. [37] W. K. Hussam, H. J. Salem, A. M. Redha, A. M. Khlefat and F. A. Khatib, Experimental and numerical investigation on a hybrid solar chimney-photovoltaic system for power generation in Kuwait, Energy Conversion and Management: X 15 (2022), 100249. https://doi.org/10.1016/j.ecmx.2022.100249. [38] M. Tawalbeh, S. Mohammed, A. Alnaqbi, S. Alshehhi and A. A. Othman, Analysis for hybrid photovoltaic/solar chimney seawater desalination plant: A CFD simulation in Sharjah, United Arab Emirates, Renewable Energy 202 (2023), 667-685. https://doi.org/10.1016/j.renene.2022.11.106. [39] M. F. C. Esmail, W. M. A-Elmagid, T. Mekhail, I. M. Al-Helal and M. R. Shady, A numerical comparative study of axial flow turbines for solar chimney power plant, Case Studies in Thermal Engineering 26 (2021), 101046. https://doi.org/10.1016/j.csite.2021.101046. [40] Lu Zuo, P. Dai, L. Ding, Z. Yan, X. Wang and J. Li, Effect of chimney shadow on the performance of wind supercharged solar chimney power plants, A numerical case study for the Spanish prototype, Global Energy Interconnection 4 (2021), 405-414. https://doi.org/10.1016/j.gloei.2021.09.002. [41] A. Mebarki, A. Sekhri, A. Assassi, A. Hanafi and B. Marir, CFD analysis of solar chimney power plant: finding a relationship between model minimization and its performance for use in urban areas, Energy Reports 8 (2022), 500-513. https://doi.org/10.1016/j.egyr.2021.12.008. [42] O. Nsaif, E. Ayli and E. O. Yapıcı, Numerical investigation on the performance of a small-scale solar chimney power plant for different geometrical parameters, Journal of Cleaner Production 276 (2020), 122908. https://doi.org/10.1016/j.jclepro.2020.122908. [43] D. K. Khidhir and S. A. Atrooshi, Investigation of thermal concentration effect in a modified solar chimney, Solar Energy 206 (2020), 799-815. https://doi.org/10.1016/j.solener.2020.06.011. [44] E. Abdelsalam, F. Kafiah, F. Almomani, M. Tawalbeh, S. Kiswani, A. Khasawneh, D. Ibrahim and M. Alkasrawi, An innovative design of a solar double-chimney power plant for electricity, Energies 14(19) (2021), 6235. https://doi.org/10.3390/en14196235. [45] M. Alkasrawi, E. Abdelsalam, H. Alnawafah, F. Almomani, M. Tawalbeh and A. Mousa, Integration of solar chimney power plant with photovoltaic for co- cooling, power production, and water desalination, Processes 9(12) (2021), 2155. https://doi.org/10.3390/pr9122155. [46] E. Abdelsalam, F. Kafiah, M. Tawalbeh, F. Almomani, A. Azzam, I. Alzoubi and M. Alkasrawi, Performance analysis of hybrid solar chimney-power plant for power production and seawater desalination: a sustainable approach, International Journal of Energy Research (2020). https://doi.org/10.1002/er.6004. [47] E. Abdelsalam, F. Almomani, F. Kafiah, E. Almaitta, M. Tawalbeh, A. Khasawneh, D. Habash, A. Omar and M. Alkasrawi, A new sustainable and novel hybrid solar chimney power plant design for power generation and seawater desalination, Sustainability 13(21) (2021), 12100. https://doi.org/10.3390/su132112100. [48] S. Jafari and V. Kalantar, Numerical simulation of natural ventilation with passive cooling by diagonal solar chimneys and windcatcher and water spray system in a hot and dry climate, Energy and Buildings 256 (2022), 111714. https://doi.org/10.1016/j.enbuild.2021.111714. [49] P. Guo, S. L. Y. Wang and J. Li, Numerical simulation of solar chimney-based direct airside free cooling system for green data centers, Journal of Building Engineering 32 (2020), 101793. https://doi.org/10.1016/j.jobe.2020.101793. [50] Q. Wang, G. Zhang, Q. Wu, W. Li and L. Shi, A combined wall and roof solar chimney in one building, Energy 240 (2022), 122480. https://doi.org/10.1016/j.energy.2021.122480. [51] H. Kebabsa, M. Said and A. Daimallah, Numerical investigation of a novel tower solar chimney concept, Energy 214 (2021), 119048. https://doi.org/10.1016/j.energy.2020.119048. [52] P. Das and V. P. Chandramohan, 3D numerical study on estimating flow and performance parameters of solar updraft tower (SUT) plant: impact of divergent angle of chimney, ambient temperature, solar flux and turbine efficiency, Journal of Cleaner Production 256 (2020), 120353. https://doi.org/10.1016/j.jclepro.2020.120353. [53] B. N. Padhi, M. Pandey and I. Mishra, Relation of change in geometrical parameters in the thermal performance of solar chimney, J. Mech. Sci. Technol. 35 (2021), 4737-4746. https://doi.org/10.1007/s12206-021-0939-8.
|