Keywords and phrases: bivariate t distribution, cdf, graphs, pdf, R-code.
Received: July 8, 2024; Revised: August 18, 2024; Accepted: August 27, 2024; Published: September 6, 2024
How to cite this article: Budi Pratikno, Debora Sukabhakti and Siti Khotijah, The bivariate t distribution and its graphical analysis, Universal Journal of Mathematics and Mathematical Sciences 20(2) (2024), 153-161. https://doi.org/10.17654/2277141724009
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References: [1] D. E. Amos and W. G. Bulgren, On the computation of a bivariate t-distribution, Math. Comp. 23 (1968), 319-333. [2] D. E. Amos and W. G. Bulgren, Computation of a multivariate F distribution, Journal of Mathematics of Computation 26 (1972), 255-264. [3] W. G. Bulgren, R. L. Dykstra and J. E. Hewett, A bivariate t-distribution with applications, J. Amer. Statist. Assoc. 69 (1974), 525-532. [4] C. W. Dunnett and Milton Sobel, A bivariate generalization of student’s t-distribution, with tables for certain special cases, Biometrika 41(1-2) (1954), 153-169. [5] A. H. El-Bassiouny and M. C. Jones, A bivariate F distribution with marginals on arbitrary numerator and denominator degrees of freedom, and related bivariate beta and t distributions, Stat. Methods Appl. 18(4) (2009), 465-481. [6] A. H. Joarder, On some characteristics of the bivariate t-distribution, International Journal of Modern Mathematics 2(2) (2007), 191-204. [7] S. Khan, Estimation of parameters of the multivariate regression model with uncertain prior information and student-t errors, J. Statist. Res. 39(2) (2005), 79-94. [8] S. Khan, Shrinkage estimators of intercept parameters of two simple regression models with suspected equal slopes, Comm. Statist. Theory Methods 37 (2008), 247-260. [9] S. Khan and Z. Hoque, Preliminary test estimators for the multivariate normal mean based on the modified W, LR and LM test, J. Statist. Res. 37(1) (2003), 43-55. [10] S. Khotijah, Distribusi t Sentral Bivariat, Skripsi, Universitas Jenderal Soedirman, Purwokerto, 2016. [11] B. Pratikno, Test of hypothesis for linier regression models with non sample prior information, Dissertation, University of Southern Queensland, Australia, 2012. [12] B. Pratikno, Jajang, Setianingsih and R. Sudarwo, Power dan size distribusi normal dan aplikasinya, Jurnal Ilmiah Matematika dan Pendidikan Matematika 9(1) (2017a), 111-116. [13] B. Pratikno, S. Khotijah, A. Prabowo and Y. W. Haryono, The bivariate central t distribution and its applications, Far East J. Math. Sci. (FJMS) 102(11) (2017b), 2643-2657. [14] B. Pratikno, Jajang, S. Y. Layyinah, G. M. Pratidina and Y. D. Suryaningtyas, The power of Weibull and exponential distribution on testing parameters shape, IOP Conference Series: Earth and Environmental Sciences, 2019a. [15] B. Pratikno, G. M. Pratidina and Setianingsih, Power of hypothesis testing parameters shape of the distributions, Far East J. Math. Sci. (FJMS) 110(1) (2019b), 15-22. [16] A. K. Md. E. Saleh, Theory of Preliminary Test and Stein-type Estimation with Applications, John Wiley and Sons, Inc., New Jersey, 2006. [17] A. K. Md. E. Saleh and P. K. Sen, Non parametric test of locations after a preliminary test on regression in multivariate case, Comm. Statist. Theory Methods 11 (1983), 639-651. [18] J. Shao, Mathematical Statistics: Exercise and Solution, Springer, New York, 2008. [19] M. M. Siddiqui, A bivariate t distribution, Ann. Math. Statist. 38 (1967), 162-166. [20] D. D. Wackerly, W. Mendenhall III and R. L. Scheaffer, Mathematical Statistics with Application, 7th ed., Thomson Learning, Inc., Belmont, CA, USA, 2008. [21] R. M. Yusuf, Increasing power of M-test through pre-testing, Unpublished Ph. D. Thesis, University of Southern Queensland, Australia, 2010. [22] R. M. Yunus and S. S. Khan, The bivariate noncentral chi-square distribution - a compound distribution approach, Appl. Math. Comput. 217 (2011), 6237-6247.
|