Keywords and phrases: Laplace-SBA method, media porous, reaction-diffusion-convection equation.
Received: April 13, 2024; Accepted: June 7, 2024; Published: July 18, 2024
How to cite this article: Yanick Alain Servais WELLOT and Gires Dimitri NKAYA, Laplace-SBA method for solving reaction-diffusion-convection type equations from porous media, International Journal of Numerical Methods and Applications 24(2) (2024), 127-143. https://doi.org/10.17654/0975045224009
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References: [1] K. Abbaoui and Y. Cherruault, Convergence of the Adomian method applied to the nonlinear equations, Journal of Mathematics Sciences: Advances and Applications 20(9) (1994), 60-73. [2] S. N. Ameina, Power series solutions for nonlinear systems of partial differential equations, Math. Comput. Modelling 61 (2020), 1-35. [3] J. Bonazebi-Yindoula, Laplace-Some Blaise Abbo method for solving nonlinear coupled Burger’s equations, European Journal of Pure and Applied Mathematics 14(3) (2021), 842-862. [4] A. De Wit and G. M. Homsy, Viscous fingering in periodically heterogeneous porous media, II. Numerical Simulations, Journal of Chemical Physics 107(22) (1997), 9619-9628. [5] A. De Wit and G. M. Homsy, Viscous fingering in reaction-diffusion systems, Journal of Chemical Physics 110(17) (1999), 8663-8675. [6] A. De Wit, Fingering of chemical fronts in porous media, Physical Review Letters 87(5) (2001), 1-4. [7] A. De Wit, Miscible density fingering of chemical fronts in porous media: Nonlinear simulations, Physics of Fluids 16(1) (2004), 163-175. [8] A. Hidalgo and L. Tello, Modified Laplace Decomposition Method, Elsevier, 441(1) (2023), 127675. [9] M. Hussain and M. Majid Khan, Miscible density fingering of chemical fronts in porous medium: Nonlinear simulations, Applied Mathematical Science 4(36) (2010), 1769-1783. [10] T. E. Jupp and A. W. Woods, Thermally driven reaction fronts in porous media, Journal of Fluid Mechanics 484 (2003), 329-346. [11] A. Khalouta and A. Kadem, New analytical method for solving nonlinear time-fractional reaction-diffusion-convection problems, Revista Colombiana de Matemáticas 54(1) (2020), 1-11. [12] A. J. C. Ladd and S. Piotr, Reactive flows in porous media: challenges in theoretical and numerical methods, Annual Review of Chemical and Biomolecular Engineering 12 (2021), 543-571. [13] M. Mishra, P. M. J. Trevelyan, C. Almarcha and A. De Wit, Influence of double diffusive effects on miscible viscous fingering, Physical Reviews Letters 11(149) (2019), 1-15. [14] S. Mahmood, R. Shan, H. Khan and M. Arif, Laplace-Adomian decomposition method for multi time fractional model of Navier-Stokes equation, Symmetry 105(20) (2010), 1-5. [15] A. Naghipour and J. Manafian, Application of the Laplace-Adomian decomposition and implicit methods for solving Burgers equation, TWMS J. Appl. Math. 6(1) (2015), 68-77. [16] Y. Paré, M. Minoungou and A. W. Nébié, Resolution of nonlinear convection- diffusion-reaction equations of Cauchy’s kind by the Laplace-SBA method, European Journal of Pure and Applied Mathematics 12(3) (2019), 771-789. [17] P. Pue-on, Application of the Laplace-Adomian decomposition method for solving Newell-Whitehead-Segel equation, Applied Mathematical Sciences 7(32) (2013), 6593-6600. [18] S. Rezapour, M. I. Liaqat and S. Etemad, An effective new iterative method to solve conformable Cauchy reaction-diffusion equation via the Sehu transform, Journal of Mathematics 2022 (2022), 2-12. [19] L. Salhi and A. Taik, Reaction fronts in porous media, influence of Lewis number, linear stability analysis, Int. J. Adv. Math. Mech. 5(1) (2017), 15-27. [20] S. Sinha, Y. Méheust, H. Fyhn, S. Roy and A. Hansen, Disorder-induced non-linear growth of viscously-unstable immiscible two-phase flow fingers in porous media, 2023. arXiv preprint: arXiv:2312.14799. [21] E. Soboleva, Instability problems and density-driven convection in saturated porous media linking to hydrogeology: A review, Fluids 8(2) (2023), 36. [22] F. Torabi, N. Karimi, G. P. Peterson and S. Yee, Challenges and progress on the modelling of entropy generation in porous media: a review, International Journal of Heat and Mass Transfer 114 (2017), 31-46. [23] A. M. Wazwaz and M. S. Mehanna, The combined Laplace-Adomian method for handling singular integral equation of heat transfer, International Journal of Nonlinear Sciences 10(2) (2010), 248-252. [24] F. Zami-Pierre, R. de Loubens, M. Quintard and Y. Davit, Polymer flow trough porous media: numerical prediction of the contribution of slip to the apparent viscosity, Transport in Porous Media 119(3) (2010), 521-538.
|