Keywords and phrases: generalized nonlinear dispersive Boussinesq equation, bifurcation, phase portrait, soliton cusp wave, periodic cusp wave.
Received: April 10, 2024; Accepted: June 1, 2024; Published: July 4, 2024
How to cite this article: Dahe Feng, Airen Zhou and Jianjun Jiao, Bifurcations, smooth and non-smooth traveling wave solutions for generalized nonlinear dispersive Boussinesq equation, Far East Journal of Dynamical Systems 37(2) (2024), 137-177. https://doi.org/10.17654/0972111824007
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References: [1] Y. Li, R. Yao and S. Lou, An extended Hirota bilinear method and new wave structures of -dimensional Sawada-Kotera equation, Appl. Math. Lett. 145 (2023), 108760. [2] L. Li, C. Duan and F. Yu, An improved Hirota bilinear method and new application for a nonlocal integrable complex modified Korteweg-de Vries (MKdV) equation, Phys. Lett. A 383(14) (2019), 1578-1582. [3] Y. Yang, T. Suzuki and J. Wang, Bäcklund transformation and localized nonlinear wave solutions of the nonlocal defocusing coupled non-linear Schrödinger equation, Commun. Nonlinear Sci. Numer. Simul. 95 (2021), 105626. [4] Y. Yang, T. Xia and T. Liu, Darboux transformation and exact solution to the nonlocal Kundu-Eckhaus equation, Appl. Math. Lett. 141 (2023), 108602. [5] H. Chen and S. Zheng, Darboux transformation for nonlinear Schrödinger type hierarchies, Phys. D 454 (2023), 133863. [6] G. Iskenderoglu and D. Kaya, Chirped self-similar pulses and envelope solutions for a nonlinear Schrödinger’s in optical fibers using Lie group method, Chaos Sotiton. Fract. 162 (2022), 112453. [7] M. Moustafa, A. M. Amin and G. Laouini, New exact solutions for the nonlinear Schrödinger’s equation with anti-cubic nonlinearity term via Lie group method, Optik 248 (2021), 168205. [8] S. Rekha, R. R. Rani, L. Rajendran and M. E. G. Lyons, A new method to study the nonlinear reaction-diffusion process in the electroactive polymer film using hyperbolic function method, Int. J. Electrochem. Sci. 17(12) (2022), 221261. [9] H. U. Rehman, A. U. Awan, E. M. Tag-ElDin, S. E. Alhazmi, M. F. Yassen and R. Haider, Extended hyperbolic function method for the -dimensional nonlinear soliton equation, Results Phys. 40 (2022), 105802. [10] S. Mostafa, R. El-Barkouky, H. M. Ahmed and I. Samir, Investigation of chirped optical solitons perturbation of higher order NLSE via improved modified extended tanh function approach, Results Phy. 52 (2023), 106760. [11] E. M. E. Zayed, M. E. M. Alngar and M. El-Horbaty, Optical solitons in fiber Bragg gratings having Kerr law of refractive index with extended Kudryashov’s method and new extended auxiliary equation approach, Chinese J. Phys. 66 (2020), 187-205. [12] R. Silambarasan and K. S. Nisar, Doubly periodic solutions and non-topological solitons of -dimension Wazwaz Kaur Boussinesq equation employing Jacobi elliptic function method, Chaos Sotiton. Fract. 175(1) (2023), 113997. [13] A. Hussain, Y. Chahlaoui, F. D. Zaman, T. Parveen and A. M. Hassan, The Jacobi elliptic function method and its application for the stochastic NNV system, Alex. Eng. J. 81 (2023), 347-359. [14] F. D. Emmanuel, W. K. T. Gildas, I. D. Zacharie, K. J. Aurélien, P. N. Jean and N. Laurent, Exotical solitons for an intrinsic fractional circuit using the sine-cosine method, Chaos Sotiton. Fract. 160 (2022), 12253. [15] S. W. Yao, S. Behera, M. Inc, H. Rezazadeh, J. P. S. Virdi, W. Mahmoud, O. A. B. Arqub and M. S. Osman, Analytical solutions of conformable Drinfel’d-Sokolov-Wilson and Boiti Leon Pempinelli equations via sine-cosine method, Results Phy. 42 (2022), 105990. [16] A. K. M. K. S. Hossain and M. A. Akbar, Traveling wave solutions of Benny Luke equation via the enhanced -expansion method, Ain Shams Eng. J. 12(4) (2021), 4181-4187. [17] L. Zhang, L. Chen and X. Huo, New exact compaction, peakon and solitary solutions of the generalized Boussinesq-like equations with nonlinear dispersion, Nonlinear Anal.-Theor. 67(12) (2007), 3276-3282. [18] W. Sun and Y. Sun, The degenerate breather solutions for the Boussinesq equation, Appl. Math. Lett. 128 (2022), 107884. [19] Z. Yan, Constructing exact solutions for two-dimensional nonlinear dispersion Boussinesq equation. II: Solitary pattern solutions, Chaos Soliton Fract. 18 (2003), 869-880. [20] A. M. Wazwaz, Solutions of compact and noncompact structures for nonlinear Klein-Gordon-type equation, Appl. Math. Comput. 134(2-3) (2003), 487-500. [21] D. Feng, J. Li and J. Jiao, Dynamical behavior of singular traveling waves of -dimensional nonlinear Klein-Gordon equation, Qual. Theor. Dyn. Syst. 18 (2019), 265-287. [22] S. Chow and J. K. Hale, Method of Bifurcation Theory, Springer-Verlag, New York, 1981. [23] J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields, Springer-Verlag, New York, 1983. [24] J. Li and Z. Liu, Traveling wave solutions for a class of nonlinear dispersive equations, Chinese Ann. Math. B 23(3) (2003), 397-418.
|