Keywords and phrases: multi-switching synchronization, Mathematica, Matlab.
Received: September 26, 2023; Accepted: December 28, 2023; Published: February 1, 2024
How to cite this article: Mohammad Shahzad and Mohammed Naheed, A comparison of simulation between Mathematica and Matlab during multi-switching synchronization, Far East Journal of Dynamical Systems 36(2) (2023), 165-202. http://dx.doi.org/10.17654/0972111823008
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References:
[1] N. Kaur, B. Oskotsky, A. J. Butte and Z. Hu, Systematic identification of ACE2 expression modulators reveals cardiomyopathy as a risk factor for mortality in COVID-19 patients, Genome Biol. 23 (2022), Article number 15. https://doi.org/10.1186/s13059-021-02589-4. [2] G. Siracusano et al., Different decay of antibody response and VOC sensitivity in naïve and previously infected subjects at 15 weeks following vaccination with BNT162b2, J. Transl. Med. 20 (2022), Article number 22. https://doi.org/10.1186/s12967-021-03208-3. [3] A. Habernau Mena, I. García-Moguel, M. Vazquez de la Torre Gaspar, V. Mugica, M. I. Alvarado Izquierdo, M. A. Jimenez Blanco, M. Gandolfo-Cano, M. Jiménez Lara, A. Gonzalez Moreno, P. Saura Foix, A. Navarro-Pulido, C. Martin-Arriscado Arroba, J. Delgado Romero and J. Dominguez-Ortega, COVID-19 course in allergic asthma patients: a Spanish cohort analysis, J. Asthma Allergy 15 (2022), 257-264. https://doi.org/10.2147/JAA.S344934. [4] A. Maiti and M. Y. Konopleva, How we incorporate venetoclax in treatment regimens for acute myeloid leukemia, The Cancer Journal 28(1) (2022), 2-13. doi: 10.1097/PPO.0000000000000567. [5] K. V. Modi, U. N. Patel, S. J. Patel, J. N. Patel and S. R. Patel, Efficacy of partially and fully submerged circular cross-section metal hollow-fins and black cotton cloth wick-segments on a single-basin dual-slope solar still, Journal of Cleaner Production 344 (2022), 131059. https://doi.org/10.1016/j.jclepro.2022.131059. [6] R. J. Barro, J. F. Ursúa and J. Weng, Macroeconomics of the great influenza pandemic, 1918-1920, Research in Economics 76 (2022), 21-29. https://doi.org/10.1016/j.rie.2022.01.001. [7] S.-R. Yan, K. A. Alattas, M. Bakouri, A. K. Alanazi, A. Mohammadzadeh, S. Mobayen, A. Zhilenkov and W. Guo, Generalized type-2 fuzzy control for type-I diabetes: analytical robust system, Mathematics 10(5) (2022), 690. https://doi.org/10.3390/math10050690. [8] M. Shahzad, The improved results with Mathematica and effects of external uncertainty and disturbances on synchronization using a robust adaptive sliding mode controller: a comparative study, Nonlinear Dyn. 79(3) (2015), 2037-2054. [9] M. Shahzad, I. Ahmad, A. B. Saaban and A. B. Ibrahim, Improved time response of stabilization in synchronization of chaotic oscillators using Mathematica, Systems 4(2) (2016), 1-21. [10] M. Pourmahmood, S. Khanmohammadi and G. Alizadeh, Synchronization of two different uncertain chaotic systems with unknown parameters using a robust adaptive sliding mode controller, Commun. Nonlinear Sci. Numer. Simul. 16 (2011), 2853-2868. [11] A. N. Njah, Synchronization via active control of parametrically and externally excited F6-Van der Pol and Duffing oscillators and application to secure communications, J. Vib. Cont. 17 (2011), 493-504. [12] M. Shahzad, Reduced order synchronization: a comparison of simulation between Mathematica and Matlab, i-manager’s Journal on Mathematics 8(4) (2019), 1-9. https://doi.org/10.26634/jmat.8.4.17548. [13] M. Shahzad, Reduced order anti-synchronization: a comparison of simulation between mathematica and matlab, i-manager’s Journal on Mathematics 10(1) (2021), 1-9. https://doi.org/10.26634/jmat.10.1.17980. [14] M. Shahzad, Variations in the computational study using different mathematical tools, Far East Journal of Dynamical Systems 36(1) (2023), 1-27. http://dx.doi.org/10.17654/0972111823001. [15] M. Shahzad, Multi-switching synchronization of different orders: a generalization of increased/reduced order synchronization, Iran J. Sci. Technol. Trans Sci. 44(1) (2020), 167-176. [16] A. Khan, D. Khattar and N. Prajapati, Adaptive multi switching combination synchronization of chaotic systems with unknown parameters, Int. J. Dyn. Control. 6 (2017a), 621-629. https://doi.org/10.1007/s40435-017-0320-z. [17] A. Khan, D. Khattar and N. Prajapati, Multi-switching combination-combination synchronization of chaotic systems, Pramana 88(3) (2017b), 47. https://doi.org/10.1007/s12043-016-1356-x. [18] X. Y. Wang and P. Sun, Multi-switching synchronization of chaotic system with adaptive controllers and unknown parameters, Nonlinear Dyn. 63 (2011), 599-609. [19] M. M. Djouima, A. T. Azar, S. Drid and D. Mehdi, Higher order sliding mode control for blood glucose regulation of type 1 diabetic patients, International Journal of System Dynamics Applications 7(1) (2018), 65-84. DOI: 10.4018/IJSDA.2018010104. [20] A. Khan and M. Shahzad, Synchronization of circular restricted three body problem with Lorenz hyper chaotic system using a robust adaptive sliding mode controller, Complexity 18 (2013), 58-64. [21] E. Lorenz, Deterministic nonperiodic flows, J. Atmos. Sci. 20 (1963), 130-141. [22] C. C. Chen, C. H. Tsai and C. C. Fu, Rich dynamics in self-interacting Lorenz systems, Phys. Lett. A 194 (1994), 265-271.
|