Keywords and phrases: fractional Brownian motion, large deviations principle, mixed fractional Brownian motion.
Received: September 18, 2023; Revised: November 3, 2023; Accepted: November 24, 2023
How to cite this article: Raphaël DIATTA and Alassane DIEDHIOU, Large deviation for several fractional Brownian motions and diffusion process, International Journal of Numerical Methods and Applications 24(1) (2024), 31-44. http://dx.doi.org/10.17654/0975045224003
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References:
[1] R. Azencott, Grandes deviations et applications, Ecole d’Ete de probabilite de Saint-Flour VIII, 1978, Lecture Notes in Math. 779, Springer, New York, 1980, pp. 1-176. [2] L. Bai and J. Mai, Stochastic differential equations driven by fractional Brownian motion and Poisson point process, Bernoulli 21(1) (2015), 303-334. [3] R. Becker and F. Mhlanga, Application of white noise calculus to the computation of creeks, Communication on Stochastic Analysis 7(4) (2013), 493 510. [4] C. Bender, An Itô formula for generalized functionals of a fractional Brownian motion with arbitrary Hurst parameter, Stochastic Process. Appl. 104(1) (2003), 81-106. [5] F. Biagini, Y. Hu, B. Oksendal and T. Zhang, Stochastic Calculus for Fractional Brownian Motion and Applications, Springer, 2006. [6] A. Dembo and O. Zeitouni, Large Deviations Techniques and Applications, Springer-Verlag, 2nd ed., New York, 1998. [7] R. Diatta and A. Diedhiou, Large deviation principle applied for a solution of mixed stochastic differential equation involving independent standard Brownian motion and fractional Brownian motion, Appl. Math. Sci. 14(11) (2020), 511-530. [8] R. Diatta, C. Manga and A. Diédhiou, Large deviation principle for a mixed fractional Brownian motion and jump diffusion process, Random Oper. Stoch. Equ. 30(4) (2022), 241-249. [9] T. E. Duncan, Y. Hu and B. Pasik-Duncan, Stochastic calculus for fractional Brownian motion. I. Theory, SIAM J. Control Optim. 38 (2000), 582-612. [10] M. I. Freidlin and A. D. Wentzell, Random Perturbations of Dynamical Systems, 2nd ed., Springer-Verlag, New York, 1998. [11] A. Mackay, A. Melnikov and Y. Mishura, Optimization of small deviation for mixed fractional Brownian motion with trend, Published in Stochastic, 2018. DOI: 10.1018/17442508.2018.1478835. [12] J. Guerra and D. Nualart, Stochastic differential equation driven by fractional Brownian motion and standard Brownian motion, Stoch. Anal. Appl. 26 (2008). ArXiv : 081.4963V1 [math.PR]. [13] D. Siska, Stochastic differential equations driven by fractional Brownian motion - a white noise distribution theory approach, MSC, The University of Edinburgh, 2004. [14] Y. Hu and B. Oksendal, Fractional white noise calculus and applications to finance, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 6(1) (2003), 1-32. [15] H. Holden, B. Oksendal, J. Ubé and T. Zhang, Stochastic Partial Differential Equations - A Modeling, White Noise Functional Approach, 2nd ed., Birkhauser, Boston, 2009. [16] H. Zhao and S. Xu, Freidlin-Wentzell’s large deviations for stochastic evolution equations with Poisson jumps, Advances in Pure Mathematics 6 (2016), 676-694.
|