Keywords and phrases: single molecule magnets (SMMs), 3d-4f complexes, salen type Schiff base complexes, data-driven molecular design, coordination geometry.
Received: September 13, 2023; Accepted: November 2, 2023; Published: December 13, 2023
How to cite this article: Koma Ito, Shabana Noor, Yuji Takiguchi, Daisuke Nakane and Takashiro Akitsu, Data-driven molecular design and spherical symmetry calculations of coordination geometry of some salen type 3d-4f Schiff base complexes, Far East Journal of Applied Mathematics 116(4) (2023), 357-376. http://dx.doi.org/10.17654/0972096023017
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References: [1] W. A. Zoubi, Solvent extraction of metal ions by use of Schiff bases, J. Coord. Chem. 66(13) (2013), 2264-2269. [2] N. Turan, K. Buldurun, Y. Alan, A. Savci, N. Colak, A. Mantarci, N. Turan, K. Buldurun and Y. Alan, Synthesis, characterization, antioxidant, antimicrobial and DNA binding properties of ruthenium(II), cobalt(II) and nickel(II) complexes of Schiff base containing o-vanillin, Res. Chem. Intermed. 45 (2019), 3525-3540. [3] S. Muche, K. Harms, A. Biernasiuk, A. Malm, L. Popiołek, A. Hordyjewska, A. Olszewska and M. Hołyńska, New Pd(II) Schiff base complexes derived from ortho-vanillin and l-tyrosine or l-glutamic acid: Synthesis, characterization, crystal structures and biological properties, Polyhedron 151 (2018), 465-477. [4] S. T. Tsantis, Z. G. Lada, D. I. Tzimopoulos, V. P. Bekiari, V. Psycharis, C. P. Raptopoulou and P. Perlepes, Two different coordination modes of the Schiff base derived from ortho-vanillin and 2-(2-aminomethyl) pyridine in a monnuclear uranyl complex, Heliyon 8(16) (2022), e09705. [5] A. M. Abu-Dief and I. M. Mohamed, A review on versatile applications of transition metal complexes incorporating Schiff based, Beni-Suef Univ. J. Appl. Sci. 4 (2015), 119-133. [6] A. M. Hassan and A. O. Said, Importance of the applicability of o-vanillin Schiff base complexes: review, Adv. J. of Chem.-Sec. A Thero. Eng. and Appl. Chem. 4(2) (2021), 87-103. [7] M. Andruh, The exceptionally rich coordination chemistry generated by Schiff base ligands derived from o-vanillin, Dalton Trans. 44 (2015), 16633-16653. [8] C. Kocak, G. Oylumluog, A. Donmez, M. B. Coban, U. Erkarslan, M. Aygun and H. Kara, Crystal structure and photoluminescence properties of a new monomeric copper(II) complex: bis(3--4-nitrophenolate- N, O) copper(II), Acta Cryst. C 73 (2017), 414-419. [9] A. Donmez, M. B. Coban, C. Konac, G. Oylumluoglu, U. Baisch and H. Kara, Synthesis, characterization and photoluminescence studies of new Cu(II) complex, Mol. Cryst. and Liq. Cryst. 652 (2017), 213-222. [10] I. Gonu, A. Y. Burak, S. Karaca, O. Sahin and S. Serin, Novel copper(II) complexes of tridendate ONN type ligand: synthesis, characterization, electrical conductivity and luminescence properties, Inorg. Chim. Acta. 477 (2018), 75-83. [11] C. X. Ding, Jia Ni, Y. H. Yang, S. W. Ng, B. W. Wang and Y. S. Xie, Mono-, tetra- and octanuclear transition metal complexes of in situ generated Schiff base ligand containing upto 12 coordinating atoms: syntheses, structures and magnetism, Cryst. Eng. Comm. 14 (2012), 7312-7319. [12] G. Christou, D. Gatteschi, D. N. Hendrickson and R. Sessoli, Single molecule magnets, MRS Bull. 25 (2000), 66-71. [13] R. Bagai and G. Christou, The drosophila of single-molecule magnetism: [Mn12O12(OCR)16(H2O)4], Chem. Soc. Rev. 38 (2009), 1011-1026. [14] D. Gatteschi, A. Caneschi, L. Pardi and R. Sessoli, Large clusters of metal ion: the transition from molecule to bulk materials, Science 265 (1994), 1054-1058. [15] N. Ishikawa, M. Sugita, T. Ishikawa, S.-Y. Koshihara and Y. Kaizu, Mononuclear lanthanide complexes with a long magnetization relaxation time at high temperatures: a new category of magnets at the single molecule level, J. Phys. Chem. B 108 (2004), 11265-11271. [16] N. Ishikawa, M. Sugita, T. Ishikawa, S.-Y. Koshihara and Y. Kaizu, Lanthanide double-decker complexes functioning as magnets at the single molecule level, J. Am. Chem. Soc. 125 (2003), 8694-8695. [17] K. Kizaki, H. Ozawa, T. Kobayashi, R. Matsuoka, Y. Sakaguchi, A. Fuyuhiro, T. Fukuda and N. Ishikawa, Coupling between the photo-excited cyclic p-system and the 4f electronic system in a lanthanide single molecule magnet, Chem. Commun. 53 (2017), 6168. [18] R. Sessoli and A. K. Powell, Strategies towards single molecule magnets based on lanthanide ions, Coord. Chem. Rev. 253 (2009), 2328. [19] (a) T. Glaser, Rational design of single-molecule magnets: a supramolecular approach, Chem. Commun. 47 (2011), 116-130. (b) Jeffrey R. L. Rinehart, Exploiting single-ion anisotropy in the design of f-element single-molecule magnets, Chem. Sci. 2 (2011), 2078-2085. (c) Y. S. Meng, S.-D. Jiang, B.-W. Wang and S. Gao, Understanding the magnetic anisotropy toward single-ion magnets, Acc. Chem. Res. 49(11) (2016), 2381-2389. [20] A. Bhunia, M. T. Gamer, L. Unger, L. F. Chibotaru, A. K. Powell and G. N. Schatteburg, From a Dy(III) single molecule magnet (SMM) to a ferromagnetic [Mn(II)Dy(III)Mn(II)] trinuclear complex, Inorg. Chem. 51 (2012), 9589-9597. [21] D. T. Pasatoiu, C. Tiseanu, A. M. Madallan, Jurca Bogdan, C. Duhayon, J. P. Sutter and M. Anduh, Study of the luminescent and magnetic properties of a series of heterodinuclear [ZnIILnIII] complexes, Inorg. Chem. 50 (2011), 5879-5889. [22] A. Chakraborty, J. Acharya and V. Chandrasekhar, Ferrocene-supported compartmental ligands for the assembly of 3d/4f complexes, ACS Omega 56 (2020), 9046-9054. [23] E. Keshavarzian, Z. Asadi, M. Poupon, M. Dusek and B. J. Rastegari, Heterodinuclear Cu-Gd (3d-4f) complex with di-compartmental Schiff base ligand in biological activity: synthesis, crystal structure, catecholase activity and DNA & BSA-binding studies, J. Mol. Liq. 345 (2022), 11785. [24] A. Bhanja, M. Schulze, R. Herchel, E. M. Pineda, W. Wernsdorfer and W. Ray, Selective coordination of self-assembled Hexanuclear [Ni4Ln2] and [Ni2Mn2Ln2] (Ln DyIII, TbIII and HoIII) complexes: stepwise synthesis, structures and magnetic properties, Inorg. Chem. 59(24) (2020), 17929-17944. [25] A. Bhanja, R. Herchel, Z. Travnicek and D. Ray, Two types of hexanuclear partial tetracubane [Ni4Ln2] (Ln Dy, Tb, Ho) complexes of thioether-based Schiff base ligands: synthesis, structure, and comparison of magnetic properties, Inorg. Chem. 58(18) (2019), 12184-12198. [26] P. Hu, X. Wang, C. Jiang, F. Yu, B. Li, G. Zhuang and T. Zhang, Nanosized chiral [Mn6Ln2] clusters modelled by enantiomeric Schiff base derivatives: synthesis, crystal structures and magnetic properties, Inorg. Chem. 57(14) (2018), 8639-8645. [27] T. Akitsu, ed., Computational and Data-driven Chemistry Using Artificial Intelligence, Elsevier, 2021, p. 69. [28] T. Akitsu and J. Iwama, Salen-type metal complexes based on structural database of X-ray crystallography, in computational and data-driven chemistry using artificial intelligence, Fundamentals, Methods and Applications, Elsevier, Amsterdam, Netherlands, 2022, pp. 69-109. [29] T. Akitsu, J. Iwama, T. Haraguchi, S. Noor and F. Kahtoon, Computational and data-driven chemistry and bioinformatics using AI, For Materials Informatics Data Creation and its Analysis, Application Examples, Publisher Technical Information Institute Co, Ltd. 2021, p. 500. [30] Y. Duan, L. E. Rosaleny, J. T. Coutinho, S. G. Santamariana, S. C. Serra and A. G. Arino, Data-driven design of molecular nanomagnets, Nat. Commun. 13 (2022), 7626. [31] A. K. Bar, P. Kalita, M. K. Singh, G. Rajaraman and V. Chandrasekhar, Low-coordinate mononuclear lanthanide complexes as molecular nanomagnets, Coord. Chem. Rev. 367 (2018), 163. [32] S. G. McAdams, A.-M. Ariciu, A. K. Kostopoulos, J. P. S. Walsh and M. Tuna, Molecular single-ion magnets based on lanthanides and actinides: design considerations and new advances in the context of quantum technologies, Coord. Chem. Rev. 346 (2017), 216. [33] S. K. Gupta and R. Murugavel, Enriching lanthanide single-ion magnetism through symmetry and axiality, Chem. Commun. 54 (2018), 3685. [34] S. T. Liddle and J. van Slageren, Improving f-element single molecule magnets, Chem. Soc. Rev. 44 (2015), 6655. [35] G. Novitchi, S. Shova, A. Caneschi, J. P. Costes, M. Gdaniec and H. Stanica, Hetero di- and trinuclear complexes with trifluoroacetate bridges: synthesis, structural and magnetic studies, Dalton Trans. 2004 (2004), 1194-1200. [36] F. Z. C. Felleh, J. P. Costes, F. Dahan, C. Dahayon, G. Novitchi, J. P. Tuchagues and L. Vendier, Di- and triheteronuclear Cu-Gd and Cu-GD-Cu complexes with dissymmetric double bridge, Inorg. Chem. 47(14) (2008), 6444-6451. [37] J. P. Costes, F. Dahan, C. Buhayon and A. J. Mota, Can novel dinuclear Ni-Gd complexes give supplementary information on the Ni-Gd magnetic interaction? Polyhedron 96 (2015), 51-56. [38] I. Oyarzabal, E. Echenique-Errandonea, E. San Sebastián, A. Rodríguez-Diéguez, J. M. Seco and E. Colacio, Synthesis, structural features and physical properties of a family of triply bridged dinuclear 3d-4f complexes, Magnetochemistry 7 (2021), 22. [39] H. L. Wang, Z. H. Chu, J. M. Peng and H. H. Zou, Hetero metallic 3d/4f-metal complexes: structure and magnetism, Journal of Cluster Science 33 (2022), 1299 1325. [40] P. L. Then, C. Takehara, Y. Kataoka, M. Nakano, T. Yamamura and T. Kajiwara, Structural switching from paramagnetic to single-molecule magnet behaviour of LnZn2 trinuclear complexes, Dalton Trans. 44 (2015), 18038. [41] T. Yoshino, Analysis of turing patterns on a spherical surface using polyhedron approximation, Forma 32 (2017), 1-6. [42] M. Tanemura, Problems of optimal configuration of points on the sphere, Proceedings of the Institute of Statistical Mathematics 46 (1998), 359-381. [43] A. Okabe, B. Boots, K. Sugihara and S. N. Chiu, Spatial Tessellations: Concepts and Applications of Voronoi Diagrams, 2nd ed., John Wiley & Sons, Chichester, 2000. [44] B. Murphy and B. Hathaway, The stereochemistry of the copper(II) ion in the solid-state*/some recent perspectives linking the Jahn/Teller effect, vibronic coupling, structure correlation analysis, structural pathways and comparative X-ray crystallography, Coordination Chemistry Reviews 43 (2003), 237-262. [45] F. A. Mautner, R. C. Fischer, A. Torvisco, M. M. Henary, F. R. Louka, S. S. Massoud and N. M. H. Salem, Five-coordinated geometries from molecular structures to solutions in copper(II) complexes generated from polydentate-N-donor ligands and pseudohalides, Molecules 25 (2020), 3376. doi:10.3390/molecules25153376 [46] W. Addison, T. N. Rao, J. Reedijk, J. V. Rijn and G. C. Verschoor, Synthesis, structure, and spectroscopic properties of copper (11) compounds containing nitrogen-sulphur donor ligands; the crystal and molecular structure of aqua[l,7-bis(N-methylben-zimidazol-2-yl)-2,6-dithiaheptane]copper(ii) perchlorate, J. Chem. Soc., Dalt. Trans. (1984), 1348-1356. [47] Y. Okamoto, N. Keisuke and T. Akitsu, Environmental dependence of artifact CD peaks of chiral Schiff base 3d-4f complexes in soft mater PMMA matrix, Int. J. Mol. Sci. 12 (2011), 6966-6967. [48] J.-H. Wang, P. F. Yan, G. M. Li, J. W. Zahang, P. Chen, M. Suda and Y. Einaga, N,N-bis(2-hydroxy-3-methoxybenzylidene)1,3-diaminopropane dimeric 4f and 3d-4f heterodinuclear complexes: syntheses, crystal structure and magnetic properties, Inorg. Chim. Acta 363 (2010), 3706-3713. [49] T. Akitsu, T. Hirstsuka and H. Shibata, Chirooptical properties of 3d-4f chiral Schiff base magnetic complexes, Magnets: Types, Uses and Safety (2012), 69-84.
|