Keywords and phrases: ill-posed problem, inverse non-standard approach, collocation discretisation, discrete controllability, numerical scheme.
Received: May 1, 2023; Accepted: June 6, 2023; Published: August 24, 2023
How to cite this article: Cyr-Séraphin Ngamouyih Moussata, Mahamat Saleh Daoussa Haggar, Deryl Nathan Bonazébi Yindoula and Benjamin Mampassi, Discrete non-standard formulation of PDE inverse problems, International Journal of Numerical Methods and Applications 23(2) (2023), 201-208. http://dx.doi.org/10.17654/0975045223011
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References: [1] C. Clason and P. Hepperger, A forward approach to numerical data assimilation, SIAM Journal on Scientific Computing 31(4) (2009), 3090-3115. [2] H. W. Engl, M. Hanke and A. Neubauer, Regularization of Inverse Problems, Kluwer Academic Publishers, 1996. [3] H. W. Engl, K. Kunisch and A. Neubauer, Convergence rates for Tikhonov regularization of nonlinear ill-posed problems, Inverse Problems 5 (1989), 523 540. [4] C. W. Groetsch, The theory of Tikhonov regularization for Fredholm equations of the first kind, Research Notes in Mathematics 105, Pitman, 1984. [5] E. Kalnay, Atmospheric Modeling, Data Assimilation and Predictability, Cambridge University Press, Cambridge, 2002. [6] F. X. Le Dimet and O. Talagrand, Variational algorithms for analysis and assimilation of meteorological observations: theoretical aspects, Tellus Series A 38 (1986), 97+. [7] J. L. Lions, Exact controllability, stabilization and perturbations for distributed systems, SIAM Rev. 30 (1988), 1-68. [8] A. López and E. Zuazua, Uniform null controllability for heat equations with rapidly oscillating coefficients, Ann. Inst. H. Poincaré Anal. Non Linéaire 19(5) (2002), 543-580. [9] J. P. Puel, A nonstandard approach to a data assimilation problem and Tychonov regularization revisited, SIAM Journal on Control and Optimization 48(2) (2009), 1089-1111. [10] J. P. Puel, Une approche non classique d’un problème d’assimilation de données, Comptes Rendus Mathematique, Elsevier 335(2) (2002), 161-166. [11] O. Talagrand and P. Courtier, Variational assimilation of meteorological observations with the adjoint vorticity equation. I: Theory, Quarterly Journal of the Royal Meteorological Society 113 (1987), 1311-1328. [12] E. Zuazua, Propagation, observation, and control waves approximated by finite difference methods, SIAM Rev. 47(2) (2005), 197-243.
|