Keywords and phrases: Casson fluid, Joule heating, chemical reaction, Cattaneo-Christov model, Keller-Box solution.
Received: October 28, 2022; Revised: January 9, 2023; Accepted: January 12, 2023
How to cite this article: D. V. N. S. R. Murthy, P. R. Sobhana Babu and Ch. Srinivasulu, Cattaneo-Christov model for mixed convective radiative flow of Casson fluid with Joule heating in the presence of chemical reaction over a stretching cylinder, JP Journal of Heat and Mass Transfer 34 (2023), 153-181. http://dx.doi.org/10.17654/0973576323038
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References: [1] C. Y. Wang, Fluid flow due to a stretching cylinder, Physics of Fluids 31 (1988), 466-468. [2] A. Ishak, R. Nazar and I. Pop, Uniform suction/blowing effect on flow and heat transfer due to a stretching cylinder, Applied Mathematical Modelling 32 (2008), 2059-2066. [3] A. Ishak, R. Nazar and I. Pop, Magnetohydrodynamic flow and heat transfer due to a stretching cylinder, Journal of Energy Conversion and Management 49 (2008), 3265-3269. [4] N. Bachok and A. Ishak, Flow and heat transfer over a stretching cylinder with prescribed surface heat flux, Malaysian Journal of Mathematical Sciences 4(2) (2010), 159-169. [5] Z. Abbas, A. Majeed and T. Javed, Thermal radiation effects on MHD flow over a stretching cylinder in a porous medium, Heat Transfer Research 44(8) (2013), 703-718. [6] A. Mahdy, Heat transfer and flow of a Casson fluid due to a stretching cylinder with the Soret and Dufour effects, Journal of Engineering Physics and Thermo Physics 88 (2015), 928-936. [7] A. Majeed, T. Javed, A. Ghaffari and M. M. Rashidi, Analysis of heat transfer due to stretching cylinder with partial slip and prescribed heat flux: a Chebyshev spectral Newton iterative scheme, Alexandria Engineering Journal 54 (2015), 1029-1036. [8] M. Tamoor, M. Waqas, M. I. Khan, A. Alsaedi and T. Hayat, Magneto-hydrodynamic flow of Casson fluid over a stretching cylinder, Results in Physics 7 (2017), 498-502. [9] V. Nagendramma and A. Leelaratnam, MHD boundary layer slip flow of a Casson nanofluid through a porous medium over a stretching cylinder with dissipation and suction/blowing, Journal of Nanofluids 6 (2017), 410-419. [10] O. D. Makinde, V. Nagendramma, C. S. K. Raju and A. Leelarathnam, Effects of Cattaneo-Christov heat flux on Casson nanofluid flow past a stretching cylinder, Defect and Diffusion Forum 378 (2017), 28-38. [11] G. J. Reddy, B. Kethireddy, M. Kumar and M. M. Hoque, A molecular dynamics study on transient non-Newtonian MHD Casson fluid flow dispersion over a radiative vertical cylinder with entropy heat generation, Journal of Molecular Liquids 252 (2018), 245-262. [12] T. Gul and S. Afridi, The heat and mass transfer analysis during bunch coating of a stretching cylinder by Casson fluid, Chapter 4: Fluid Flow Problems, IntechOpen (2018), 41-57. doi:10.5772/intechopen.79772. [13] M. Krishna Murthy, C. S. K. Raju, V. Nagendramma, S. A. Shehzad and Ali J. Chamkha, Magnetohydrodynamics boundary layer slip Casson fluid flow over a dissipated stretched cylinder, Defect and Diffusion Forum 393 (2019), 73-82. [14] M. Mishra, D. Panda and K. Swain, Effects of Joule heating and viscous dissipation on MHD flow and heat transfer of Casson fluid over a stretching cylinder in a porous medium, International Journal of Advanced Science and Technology 29(3) (2020), 9612-9623. [15] A. Zeeshan, O. U. Mehmood, F. Mabood and F. Alzahrani, Numerical analysis of hydromagnetic transport of Casson nanofluid over permeable linearly stretched cylinder with Arrhenius activation energy, International Communications in Heat and Mass Transfer 130 (2022), 105736. [16] J. B. J. Fourier, Theorie Analytique de la Chaleur, Didot, Paris, 1822, pp. 499-508. [17] C. Cattaneo, Sulla condizione del calore, Atti Del Semin. Matem. EFis. Della University di Modena 3 (1948), 83-101. 10.1007/978-3-642-11051-1_5. [18] C. I. Christov, On frame indifferent formulation of the Maxwell-Cattaneo model of finite speed heat conduction, Mech. Res. Commun. 36 (2009), 481-486. [19] M. Ciarletta and B. Straughan, Uniqueness and structural stability for the Cattaneo-Christov equations, Mech. Res. Commun. 37 (2010), 445-447. [20] B. Straughan, Thermal convection with the Cattaneo-Christov model, International Journal of Heat and Mass Transfer 53 (2010), 95-98. [21] S. Han, L. Zheng, C. Li and X. Zhang, Coupled flow and heat transfer in viscoelastic fluid with Cattaneo-Christov heat flux model, Appl. Math. Lett. 38 (2014), 87-93. [22] T. Hayat, A. Aziz, T. Muhammad and A. Alsaedi, Model and comparative study for flow of viscoelastic nanofluids with Cattaneo-Christov double diffusion, PLoS One 12(1) (2017), e0168824. [23] M. Ijaz and M. Ayub, Activation energy and dual stratification effects for Walter-B fluid flow in view of Cattaneo-Christov double diffusion, Heliyon 5(6) (2019), e01815. [24] S. K. Rawat, H. Upreti and M. Kumar, Comparative study of mixed convective MHD Cu-water nanofluid flow over a cone and wedge using modified Buongiorno’s model in presence of thermal radiation and chemical reaction via Cattaneo-Christov double diffusion model, Journal of Applied and Computational Mechanics 7(3) (2020), 1383-1402. https://doi.org/10.22055/JACM.2020.32143.1975. [25] A. Hafeez, M. Khan, A. Ahmed and J. Ahmed, Rotational flow of Oldroyd-B nanofluid subject to Cattaneo-Christov double diffusion theory, Applied Mathematics and Mechanics 41(7) (2020), 1083-1094. [26] S. Negi, S. K. Rawat and M. Kumar, Cattaneo-Christov double diffusion model with Stefan blowing effect on copper-water nanofluid flow over a stretching surface, Heat Transfer (2021). doi:10.1002/htj.22135. [27] F. O. M. Mallawi, S. Eswaramoorthi, M. Bhuvaneswari and S. Sivasankaran, Impact of double-diffusion and second order slip on convection of chemically reacting Oldroyd-B liquid with Cattaneo-Christov dual flux, Thermal Science 25 (2021), 3729-3740. [28] K. Loganathan, N. Alessa, N. Namgyel and T. S. Karthik, MHD flow of thermally radiative Maxwell fluid past a heated stretching sheet with Cattaneo-Christov dual diffusion, Journal of Mathematics 2021 (2021), Article ID 5562667, 10 pp. https://doi.org/10.1155/2021/5562667. [29] K. M. Khalil, A. Soleiman, A. M. Megahed and W. Abbas, Impact of variable fluid properties and double diffusive Cattaneo-Christov model on dissipative non-Newtonian fluid flow due to a stretching sheet, Mathematics 10 (2022), 1179. https://doi.org/10.3390/math10071179. [30] A. Ishak, MHD boundary layer flow due to an exponentially stretching sheet with radiation effect, Sains Malaysiana 40(4) (2011), 391-395. [31] S. Qayyum, T. Hayat, S. A. Shehzad and A. Alsaedi, Effect of a chemical reaction on magnetohydrodynamic (MHD) stagnation point flow of Walters-B nanofluid with Newtonian heat and mass conditions, Nuclear Engineering and Technology 49 (2017), 1636-1644. [32] T. Hayat, M. Rashidi, M. Imtiaz and A. Alsaedi, MHD convective flow due to a curved surface with thermal radiation and chemical reaction, Journal of Molecular Liquids 225 (2017), 482-489. [33] T. Hayat, S. Qayyum, A. Alsaedi and S. Asghar, Radiation effects on the mixed convection flow induced by an inclined stretching cylinder with non-uniform heat source/sink, PLoS ONE 12(4) (2017), e0175584. https://doi.org/10.1371/journal. [34] G. M. Rahman and M. Amal, Non-Newtonian magneto-hydrodynamic fluid with radiation by stretching cylinder, Journal of Nanofluids 9 (2020), 106-113. [35] Y. J. Lim, S. Shafie, S. Mohamad, N. A. Rawi and A. Q. Mohamad, Impact of chemical reaction, thermal radiation and porosity on free convection Carreau fluid flow towards a stretching cylinder, Alexandria Engineering Journal 61 (2022), 4701-4717. [36] P. L. Chambre and J. D. Young, On the diffusion of a chemically reactive species in a laminar boundary layer flow, Physics of Fluids 1(1) (1958), 48-54. [37] F. T. Akyildiz, H. Bellout and K. Vajravelu, Diffusion of chemically reactive species in a porous medium over a stretching sheet, Journal of Mathematical Analysis and Applications 320 (2006), 322-339. [38] K. Gangadhar, N. Bhaskar Reddy and P. K. Kameswaran, Similarity solution of hydro magnetic heat and mass transfer over a vertical plate with a convective surface boundary condition and chemical reaction, International Journal of Nonlinear Science 13(3) (2012), 298-307. [39] K. Gangadhar, Soret and Dufour effects on hydro magnetic heat and mass transfer over a vertical plate with a convective surface boundary condition and chemical reaction, Journal of Applied Fluid Mechanics 6 (2013), 95-105. [40] K. Gangadhar and N. Bhaskar Reddy, Chemically reacting MHD boundary layer flow of heat and mass transfer over a moving vertical plate in a porous medium with suction, Journal of Applied Fluid Mechanics 6(1) (2013), 107-114. [41] Y. Hari Krishna, G. V. Ramana Reddy and O. D. Makinde, Chemical reaction effect on MHD flow of Casson fluid with porous stretching sheet, Defect and Diffusion Forum 389 (2018), 100-109. [42] A. Saeed, E. A. Algehyne, M. S. Aldhabani, A. Dawar, P. Kumam and W. Kumam, Mixed convective flow of a magnetohydrodynamic Casson fluid through a permeable stretching sheet with first-order chemical reaction, PLoS ONE 17(4) (2022), e0265238. https://doi.org/10.1371/journal.pone.0265238. [43] K. A. Kumar, A. C. Venkata Ramudu, V. Sugunamma and N. Sandeep, Effect of non-linear thermal radiation on MHD Casson fluid flow past a stretching surface with chemical reaction, International Journal of Ambient Energy 43(1) (2022), 8400-8407. https://doi.org/10.1080/01430750.2022.2097947. [44] B. Goud, Y. Reddy, W. Jamshed, K. S. Nisar, A. N. Alharbi and R. Chouikh, Radiation effect on MHD Casson fluid flow over an inclined non-linear surface with chemical reaction in a Forchheimer porous medium, Alexandria Engineering Journal 61(10) (2022), 8207-8220. [45] T. Fang, J. Zhang and S. Yao, Slip MHD viscous flow over a stretching sheet - an exact solution, Communications in Nonlinear Science and Numerical Simulation 14(11) (2009), 3731-3737. [46] C. Y. Wang, Free convection on a vertical stretching surface, Journal of Applied Mathematics and Mechanics 69(11) (1989), 418-420. [47] R. S. R. Gorla and I. Sidawi, Free convection on a vertical stretching surface with suction and blowing, Applied Scientific Research 52(3) (1994), 247-257. [48] H. B. Keller, A new difference scheme for parabolic problems, Numerical Solutions of Partial Differential Equations 2 (1971), 327-350.
|