Keywords and phrases: ferromagnetism, magnetic structure, magnetic properties, heat capacity, magnetic susceptibility.
Received: April 13, 2023; Accepted: May 3, 2023; Published: May 18, 2023
How to cite this article: I. A. Stepanov, Exact solutions of the Ising models in a magnetic field, JP Journal of Heat and Mass Transfer 33 (2023), 51-70. http://dx.doi.org/10.17654/0973576323023
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References:
[1] I. A. Stepanov, Exact solutions of the one-dimensional, two-dimensional, and three-dimensional Ising models, Nano Science and Nano Technology: An Indian J. 6(3) (2012), 118-122. [2] H. E. Stanley, Introduction to Phase Transitions and Critical Phenomena, Oxford University Press, New York, Oxford, 1987. [3] I. A. Stepanov, About the two solutions of the Ising model, Nano Science and Nano Technology: An Indian J. 7(6) (2013), 209-211. [4] K. Binder, Ising Model, Encyclopaedia of Mathematics, M. Hazewinkel, ed., Kluwer Academic Publishers, London, UK, 2000, pp. 279-281. [5] J. M. Yeomans, Statistical Mechanics of Phase Transitions, Oxford University Press, Oxford, 1993. [6] P. M. Chaikin and T. C. Lubensky, Principles of Condensed Matter Physics, Cambridge University Press, Cambridge, UK, 1995, p. 244. [7] G. F. Newell and E. W. Montroll, On the theory of the Ising model of ferromagnetism, Rev. Mod. Phys. 25(2) (1953), 353-389. doi:10.1103/RevModPhys.25.353. [8] C. Domb, On the theory of cooperative phenomena in crystals, Adv. Phys. 9(34) (1960), 149-244. doi:10.1080/00018736000101189. [9] B. M. McCoy and T. T. Wu, The Two-dimensional Ising Model, Harvard University Press, Cambridge, Massachusetts, 1973. [10] R. J. Baxter, Exactly Solved Models in Statistical Mechanics, Academic Press, London, UK, 1989. [11] M. Hasenbusch, Monte Carlo studies of the three-dimensional Ising model in equilibrium, Int. J. Mod. Phys. C 12(7) (2001), 911-1009. doi:10.1142/S0129183101002383. [12] A. K. Murtazaev, M. K. Ramazanov, M. A. Magomedov and D. R. Kurbanov, Studying thermodynamic properties of the Ising model on a body-centered cubic lattice with competing exchange interactions, Phys. Solid State 60(9) (2018), 1848-1852. doi:10.1134/S1063783418090214. [13] A. Hucht, The square lattice Ising model on the rectangle I: finite systems, J. Phys. A: Math. Theor. 50(6) (2017), 065201, 24 pp. doi:10.1088/1751-8121/aa5535. [14] I. A. Stepanov, Invalidity of the former exact solution of the two-dimensional Ising model, Nano Science and Nano Technology: An Indian J. 7(3) (2013), 92-93. [15] I. A. Stepanov, Heat capacity of the simple-cubic Ising model, Nano Science and Nano Technology: An Indian J. 9(1) (2015), 16-18. [16] X. Feng and H. W. Blöte, Specific heat of the simple-cubic Ising model, Phys. Rev. E 81(3) (2010), 031103, 7 pp. doi:10.1103/PhysRevE.81.031103. [17] L. Onsager, Crystal statistics. I. A two-dimensional model with an order-disorder transition, Phys. Rev. 65(3-4) (1944), 117-149. doi:10.1103/PhysRev.65.117. [18] S. S. Berdonosov, Polonij, Fizicheskaja Enciklopedija, Vol. 4, Bolshaja Rossijskaja Enciklopedija, Moscow, Russia, 1994, p. 28. [19] B. F. Mjasoedov, Polonij, Himicheskaja Enciklopedija, Vol. 4, Bolshaja Rossijskaja Enciklopedija, Moscow, Russia, 1995, pp. 53-54. [20] D. N. Zubarev, Korreljacionnaja funkcija, Fizicheskaja Enciklopedija, Vol. 2, Sovetskaja Enciklopedija, Moscow, Russia, 1990, pp. 465-466. [21] A. I. Akhiezer and S. V. Peletminskii, Methods of Statistical Physics, Pergamon Press, Oxford, 1981. [22] D. D. Das, Exact partition function of Ising model in magnetism in one, two and three dimensions in nonzero field, Indian J. Phys. 44(4) (1970), 244-252.
|