Keywords and phrases: nanofluids, MEMS, LBM, Brownian motions, forced convection heat transfer, hydrophobic surface.
Received: January 9, 2023; Accepted: February 21, 2023; Published: May 18, 2023
How to cite this article: Zarita Rahouadja, Forced convection heat transfer enhancement in a microchannel in the presence of hydrophobic surfaces using nanofluids by the Lattice Boltzmann method, JP Journal of Heat and Mass Transfer 33 (2023), 1-20. http://dx.doi.org/10.17654/0973576323019
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References:
[1] Y. I. Cho and G. A. Greene, Advances in Heat Transfer, Volume 43, Academic Press/Elsevier, Amsterdam, Boston, 2011. [2] S. W. Janson, H. Helvajian and K. Breuer, MEMS, microengineering and aerospace systems, AIAA Paper 99 (1999), 3802. [3] M. Gad-el-Hak, The fluid mechanics of microdevices - the Freeman scholar lecture, Journal of Fluids Engineering 121 (1999), 5-33. [4] A. El-Nahhas, Analytic approximations for the flows and heat transfer in microchannels between two parallel plates, Math. Probl. Eng. 2012 (2012), 1-14. https://doi.org/10.1155/2012/568345. [5] C.-M. Ho and Y.-C. Tai, Micro-electro-mechanical-systems (MEMS) and fluid flows, Annual Review of Fluid Mechanics 30 (1998), 579-612. https://doi.org/10.1146/annurev.fluid.30.1.579. [6] D. C. Tretheway and C. D. Meinhart, Apparent fluid slip at hydrophobic microchannel walls, Physics of Fluids 14 (2002), L9-L12. https://doi.org/10.1063/1.1432696. [7] P. Rosa, T. G. Karayiannis and M. W. Collins, Single-phase heat transfer in microchannels: the importance of scaling effects, Applied Thermal Engineering 29 (2009), 3447-3468. [8] N. Asproulis and D. Drikakis, Boundary slip dependency on surface stiffness, Physical Review E 81 (2010), 061503. https://doi.org/10.1103/PhysRevE.81.061503. [9] G. E. Karniadakis, N. Aluru and A. Beskok, Microflows and Nanoflows: Fundamentals and Simulation, Springer, New York, NY, 2005. [10] S. U. S. Choi and J. A. Eastman, Enhancing thermal conductivity of fluids with nanoparticles, ASME-Publications-Fed. 231 (1995), 99-106. [11] E. M. Tokit, M. Z. Yusoff and H. Mohammed, Investigation on nanoparticle velocity in two phase approach, International Journal of Mechanical, Industrial Science and Engineering 7 (2013), 136-142. [12] Masato Akamatsu, Takuto Kameyama, Yuki Yomogita, Mitsuo Iwamoto and Hiroyuki Ozoe, Numerical investigation on natural convective heat transfer of Al2O3-water nanofluids, Transactions of the JSME (in Japanese) 82 (2016), 16-00153. doi:10.1299/transjsme.16-00153. [13] S. Ghadirzadeh and M. Kalteh, Lattice Boltzmann simulation of temperature jump effect on the nanofluid heat transfer in an annulus microchannel, International Journal of Mechanical Sciences 133 (2017), 524-534. https://doi.org/10.1016/j.ijmecsci.2017.09.013. [14] A. Alipour Lalami, H. Hassanzadeh Afrouzi, A. Moshfegh, M. Omidi and A. Javadzadegan, Investigation of nanofluid heat transfer in a microchannel under magnetic field via Lattice Boltzmann method: effects of surface hydrophobicity, viscous dissipation, and Joule heating, Journal of Heat Transfer 141(6) (2019), 062403. [15] H. H. Afrouzi, M. Hosseini, D. Toghraie, E. Mehryaar and M. Afrand, Thermo-hydraulic characteristics investigation of nanofluid heat transfer in a microchannel with super hydrophobic surfaces under non-uniform magnetic field using incompressible preconditioned Lattice Boltzmann method (IPLBM), Physica A: Statistical Mechanics and its Applications 553 (2020), 124669. https://doi.org/10.1016/j.physa.2020.124669. [16] S. Mukherjee, P. Mishra, P. Chaudhuri and G. Banerjee, Theoretical modeling and optimization of microchannel heat sink cooling with TiO2-water and ZnO-water nanofluids, International Journal of Heat and Technology 36 (2018), 165-172. https://doi.org/10.18280/ijht.360122. [17] A. Karimipour, New correlation for Nusselt number of nanofluid with Ag/Al2O3/Cu nanoparticles in a microchannel considering slip velocity and temperature jump by using Lattice Boltzmann method, International Journal of Thermal Sciences 91 (2015), 146-156. [18] C. H. Chon, K. D. Kihm, S. P. Lee and S. U. S. Choi, Empirical correlation finding the role of temperature and particle size for nanofluid (Al2O3) thermal conductivity enhancement, Appl. Phys. Lett. 87(15) (2005), 153107. [19] A. Karimipour and M. Afrand, Magnetic field effects on the slip velocity and temperature jump of nanofluid forced convection in a microchannel, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 230 (2016), 1921-1936. [20] Z.-W. Tian, C. Zou, H.-J. Liu, Z.-L. Guo, Z.-H. Liu and C.-G. Zheng, Lattice Boltzmann scheme for simulating thermal micro-flow, Physica A: Statistical Mechanics and its Applications 385 (2007), 59-68. [21] C.-H. Liu, K.-H. Lin, H.-C. Mai and C.-A. Lin, Thermal boundary conditions for thermal Lattice Boltzmann simulations, Comput. Math. Appl. 59 (2010), 2178-2193. [22] R. Zarita and M. Hachemi, Numerical investigation and analysis of heat transfer enhancement in a microchannel using nanofluids by the Lattice Boltzmann method, Frontiers in Heat and Mass Transfer 12(5) (2019). [23] Q. Zou and X. He, On pressure and velocity boundary conditions for the Lattice Boltzmann BGK model, Physics of Fluids 9 (1997), 1591-1598. [24] C. Shu, X. D. Niu and Y. T. Chew, A Lattice Boltzmann kinetic model for microflow and heat transfer, Journal of Statistical Physics 121 (2005), 239-255. https://doi.org/10.1007/s10955-005-8413-z. [25] H. P. Kavehpour, M. Faghri and Y. Asako, Effects of compressibility and rarefaction on gaseous flows in microchannels, Numerical Heat Transfer, Part A: Applications 32 (1997), 677-696.
|