Keywords and phrases: non-discrete Laplace transform, analytic solution, solar energy.
Received: November 12, 2022; Revised: December 10, 2022; Accepted: December 24, 2022; Published: December 30, 2022
How to cite this article: Hind K. Al-Jeaid, Application of the continuous (non-discrete) Laplace transform for solving a mathematical model in solar energy, Advances and Applications in Discrete Mathematics 36 (2023), 69-84. http://dx.doi.org/10.17654/0974165823005
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References:
[1] S. U. S. Choi, Enhancing thermal conductivity of fluids with nanoparticles, Proceedings of the 1995 ASME International Mechanical Engineering Congress and Exposition, FED231/MD 66, 1995, pp. 99-105. [2] J. Buongiorno, Convective transport in nanofluids, ASME J. Heat Transfer 128 (2006), 240-250. [3] R. K. Tiwari and M. K. Das, Heat transfer augmentation in a two sided lid driven differentially heated square cavity utilizing nanofluids, Int. J. Heat Mass Transfer 50 (2007), 2002-2018. [4] A. Ebaid, F. Al Mutairi and S. M. Khaled, Effect of velocity slip boundary condition on the flow and heat transfer of Cu-water and -water nanofluids in the presence of a magnetic field, Adv. Math. Phys. 2014, Article ID 538950, 9 pp. http://dx.doi.org/10.1155/2014/538950. [5] Fahd Almutairi, S. M. Khaled and Abdelhalim Ebaid, MHD flow of nanofluid with homogeneous-heterogeneous reactions in a porous medium under the influence of second-order velocity slip, Mathematics 7(3) (2019), 220. doi:10.3390/math7030220. [6] E. R. El-Zahar, A. F. Aljohani, W. Alharbi and A. Ebaid, Exact solution of non-Newtonian blood flow with nanoparticles through porous arteries: a comparative study, Computers, Materials & Continua 63(3) (2020), 1143-1157. [7] Y. R. Sekhar, K. V. Sharma and S. Kamal, Nanofluid heat transfer under mixed convection flow in a tube for solar thermal energy applications, Environ. Sci. Pollut. Res. 23 (2016), 9411-9417. https://doi.org/10.1007/s11356-015-5715-9. [8] N. A. Sheikh, F. Ali, I. Khan and M. Gohar, A theoretical study on the performance of a solar collector using and water based nanofluids with inclined plate: Atangana-Baleanu fractional model, Chaos Solitons Fractals 115 (2018), 135-142. [9] R. Mehmood, Rabil Tabassum, S. Kuharat, O. Anwar Bég and M. Babaie, Thermal slip in oblique radiative nano-polymer gel transport with temperature-dependent viscosity: solar collector nanomaterial coating manufacturing simulation, Arabian Journal for Science and Engineering 44 (2019), 1525-1541. https://doi.org/10.1007/s13369-018-3599-y. [10] A. M. Norouzi, M. Siavashi and M. Khaliji Oskouei, Efficiency enhancement of the parabolic trough solar collector using the rotating absorber tube and nanoparticles, Renew. Energy 145 (2020), 569-584. http://dx.doi.org/10.1016/j.renene.2019.06.027. [11] S. E. Ghasemi and M. Hatami, Solar radiation effects on MHD stagnation point flow and heat transfer of a nanofluid over a stretching sheet, Case Studies in Thermal Engineering 25 (2021), 100898. https://doi.org/10.1016/j.csite.2021.100898. [12] E. A. C. Panduro, F. Finotti, G. Largiller and K. Y. Lervåg, A review of the use of nanofluids as heat-transfer fluids in parabolic-trough collectors, Applied Thermal Engineering 211 (2022), 118346. [13] G. Adomian, Solving Frontier Problems of Physics: The Decomposition Method, Kluwer Acad., Boston, MA, USA, 1994. [14] A. M. Wazwaz, Adomian decomposition method for a reliable treatment of the Bratu-type equations, Appl. Math. Comput. 166 (2005), 652-663. [15] A. Ebaid, Approximate analytical solution of a nonlinear boundary value problem and its application in fluid mechanics, Z. Naturforschung A 66 (2011), 423-426. [16] J. S. Duan and R. Rach, A new modification of the Adomian decomposition method for solving boundary value problems for higher order nonlinear differential equations, Appl. Math. Comput. 218 (2011), 4090-4118. [17] A. Ebaid, A new analytical and numerical treatment for singular two-point boundary value problems via the Adomian decomposition method, J. Comput. Appl. Math. 235 (2011), 1914-1924. [18] J. Diblík and M. Kúdelcíková, Two classes of positive solutions of first order functional differential equations of delayed type, Nonlinear Anal. 75 (2012), 4807-4820. [19] A. Ebaid, M. D. Aljoufi and A.-M. Wazwaz, An advanced study on the solution of nanofluid flow problems via Adomian’s method, Appl. Math. Lett. 46 (2015), 117-122. [20] S. Bhalekar and J. Patade, An analytical solution of Fisher’s equation using decomposition method, Am. J. Comput. Appl. Math. 6 (2016), 123-127. [21] A. Alshaery and A. Ebaid, Accurate analytical periodic solution of the elliptical Kepler equation using the Adomian decomposition method, Acta Astronautica 140 (2017), 27-33. [22] H. O. Bakodah and A. Ebaid, The Adomian decomposition method for the slip flow and heat transfer of nanofluids over a stretching/shrinking sheet, Rom. Rep. Phys. 70 (2018), 115. [23] H. O. Bakodah and A. Ebaid, Exact solution of Ambartsumian delay differential equation and comparison with Daftardar-Gejji and Jafari approximate method, Mathematics 6 (2018), 331. [24] A. Ebaid, A. Al-Enazi, B. Z. Albalawi and M. D. Aljoufi, Accurate approximate solution of Ambartsumian delay differential equation via decomposition method, Math. Comput. Appl. 24(1) (2019), 7. [25] A. Patra and S. Saha Ray, Homotopy perturbation Sumudu transform method for solving convective radial fins with temperature-dependent thermal conductivity of fractional order energy balance equation, Int. J. Heat and Mass Transfer 76 (2014), 162-170. [26] A. Ebaid, Remarks on the homotopy perturbation method for the peristaltic flow of Jeffrey fluid with nano-particles in an asymmetric channel, Comput. Math. Appl. 68(3) (2014), 77-85. [27] Z. Ayati and J. Biazar, On the convergence of homotopy perturbation method, J. Egypt. Math. Soc. 23 (2015), 424-428. [28] A. A. Alatawi, M. Aljoufi, F. M. Alharbi and A. Ebaid, Investigation of the surface brightness model in the milky way via homotopy perturbation method, J. Appl. Math. Phys. 8(3) (2020), 434-442. [29] S. M. Khaled, E. R. El-Zahar and A. Ebaid, Solution of Ambartsumian delay differential equation with conformable derivative, Mathematics 7 (2019), 425. [30] S. M. Khaled, A. Ebaid and F. Al Mutairi, The exact endoscopic effect on the peristaltic flow of a nanofluid, J. Appl. Math. Volume 2014, Article ID 367526, 11 pages. http://dx.doi.org/10.1155/2014/367526. [31] A. Ebaid and M. Al Sharif, Application of Laplace transform for the exact effect of a magnetic field on heat transfer of carbon-nanotubes suspended nanofluids, Z. Nature. A 70(6) (2015), 471-475. [32] A. Ebaid, A. M. Wazwaz, E. Alali and B. Masaedeh, Hypergeometric series solution to a class of second-order boundary value problems via Laplace transform with applications to nanofluids, Commun. Theor. Phys. 67 (2017), 231. [33] H. Saleh, E. Alali and A. Ebaid, Medical applications for the flow of carbon-nanotubes suspended nanofluids in the presence of convective condition using Laplace transform, J. Assoc. Arab Univ. Basic Appl. Sci. 24 (2017), 206-212. [34] A. Ebaid, E. Alali and H. Saleh, The exact solution of a class of boundary value problems with polynomial coefficients and its applications on nanofluids, J. Assoc. Arab Univ. Basic Appl. Sci. 24 (2017), 156-159. [35] S. M. Khaled, The exact effects of radiation and Joule heating on magnetohydrodynamic Marangoni convection over a flat surface, Therm. Sci. 22 (2018), 63-72. [36] H. S. Ali, E. Alali, A. Ebaid and F. M. Alharbi, Analytic solution of a class of singular second-order boundary value problems with applications, Mathematics 7 (2019), 172. https://doi.org/10.3390/math7020172. [37] A. Ebaid, W. Alharbi, M. D. Aljoufi and E. R. El-Zahar, The exact solution of the falling body problem in three-dimensions: comparative study, Mathematics 8(10) (2020), 1726. https://doi.org/10.3390/math8101726. [38] A. F. Aljohani, A. Ebaid, E. A. Algehyne, Y. M. Mahrous, P. Agarwal, M. Areshi and H. K. Al-Jeaid, On solving the chlorine transport model via Laplace transform, Scientific Reports 12 (2022), 12154. https://doi.org/10.1038/s41598-022-14655-3. [39] M. R. Spiegel, Laplace Transforms, McGraw-Hill Inc., 1965.
|