Keywords and phrases: optimal control, tumor propagation, regional controllability, scalability.
Received: October 21, 2022; Revised: January 4, 2023; Accepted: January 5, 2023; Published: January 28, 2023
How to cite this article: Cheikh SECK, Mouhamadou NGOM and Lamine NDIAYE, A study on non-classical optimal control and dynamic regional controllability by scalability of tumor evolution, International Journal of Numerical Methods and Applications 23(1) (2023), 67-85. http://dx.doi.org/10.17654/0975045223004
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References:
[1] H. P. Greenspan, Models for the growth of a solid tumor by diffusion, Studies Appl. Math. 52 (1972), 317-340. [2] H. P. Greenspan, On the growth on cell culture and solid tumors, Theoretical Biology 56 (1976), 229-242. [3] M. Kimmel and A. Swierniak, Control Theory Approach to Cancer Chemotherapy: Benefiting from Phase Dependence and Overcoming Drug Resistance, Lect. Notes Math. 1872 (2006), pp. 185-221. [4] U. Ledzewicz and H. Sachattlerl, Drug resistance in cancer chemotherapy as an optimal control problem, Discrete and Continuous Dynamical Systems- Series-B 6(1) (2006), 129-150. [5] M. Ngom, I. Ly and D. Seck, Study of a tumor by shape and topological optimization, Applied Mathematical Sciences 5(1) (2011), 1-21. [6] A. Friedman, Free boundary problems arising in tumor models, Mat. Acc. Lincei 15(9) (2004), 161-168. [7] S. Cui and A. Friedman, Analysis of a mathematical of the effect inhibitors on the growth of tumors, Mathematical Biosciences 164 (2000), 103-137. [8] S. Cui and A. Friedman, Analysis of a mathematical model of the growth of necrotic tumors, Journal of Mathematical Analysis and Applications 255 (2001), 636-677. [9] G. M. A. J. Chaplain, The development of a spatial pattern in a model for cancer growth, Experimental and Theoretical Advances in Biological Pattern Formation, H. G. Othmer, P. K. Maini and J. D. Murray, eds., Plenum Press, 1993, pp. 45-60. [10] A. El Jai and A. J. Pritchard, Distributed parameter systems analysis via sensors and actuators, J. Wiley, Texts in Appl. Math. (1988). [11] J. L. Lions, Contrôle à moindres regrets des systèmes distribués, C. R. Acad. Sci. Paris, Ser. I Math. 315 (1992), 1253-1257. [12] J. L. Lions, Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués, Tome 1, Research in Applied Mathematics, Volume 8, Perturbations, Masson, Paris, 1988. [13] J. L. Lions, Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués, Tome 2, Research in Applied Mathematics, Volume 8, Perturbations, Masson, Paris, 1988.
|