Keywords and phrases: porous media, homogenization, parabolic equation, finite volume method, method of lines, ordinary differential equation (ODE), implicit numerical scheme.
Received: September 28, 2022; Revised: November 9, 2022; Accepted: November 19, 2022; Published: January 7, 2023
How to cite this article: Drainne Jualix Bambi Pemba and Bienvenu Ondami, Finite volume approximation of a class of two-dimensional parabolic equations with discontinuous and highly oscillating coefficients, International Journal of Numerical Methods and Applications 23(1) (2023), 51-65. http://dx.doi.org/10.17654/0975045223003
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References:
[1] B. Amaziane, Global Behavior of Compressible Three-phase Flow in Heterogeneous Porous Media, Transport in Porous Media 10 (1993), pp. 45-56. [2] B. Amaziane and B. Ondami, Numerical approximations of a second order elliptic equation with highly oscillating coefficients, Notes on Numerical Fluid Mechanics 70 (1999), pp. 1-11. [3] G. Allaire, Introduction to homogenization theory, CEA-EDF-INRIA school on homogenization, 2010. http://www.cmap.polytechnique.fr/allaire/homog/lect1.pdf [4] D. J. Bambi Pemba, Sur l’Approximation Numérique par la Méthode des Volumes Finis de Quelques Problèmes d’Ecoulements en Milieux Poreux, Thèse de Doctorat, Université Marien Ngouabi, Congo-Brazzaville, Defense in 2023. [5] D. J. Bambi Pemba and B. Ondami, Numerical approximation by the method of line with finite-volume approach of a solute transport equation in periodic heterogeneous porous media, Aust. J. Math. Anal. Appl. 17(2) (2020), 18. [6] Z. Chen and T. Y. Hou, A mixed multiscale finite element method for elliptic problems with oscillating coefficients, Mathematics of Computation 72(242) (2002), 541-576. [7] Z. Chen, W. Deng and H. Ye, A new upscaling Method for the Solute Transport Equations, Discrete and Continuous Dynamical Systems - Discrete Contin. Dyn. Syst., 13 (2005). [8] W. Deng and J. G. Jianmin Huang, Upscaling methods for a class of convection-diffusion equation with highly oscillating coefficients, Journal of Computational Physics 227 (2008), 7621-7642. [9] D. Estep, M. Pernice, D. Pham, S. Tavener and H. Wang, A posteriori error analysis of a cell-centered finite volume method for semilinear elliptic problems, Journal of Computational and Applied Mathematics 233 (2009), 459-472. [10] R. E. T. Gallouët and R. Herbin, The Finite Volume Methods, Handbook of Numerical Analysis, Techniques of Scientific Computing, Part III, North-Holland, Amsterdam, 2000. [11] U. Hornung, Homogenization and Porous Media, Texts in Interdisciplinary Applied Mathematics 6, Springer-Verlag, New York, 1997. [12] V. V. Jikov, S. M. Kozlov and O. A. Oleinik, Homogenization of Differentials Operators and Integral Functionals, Springer-Verlag, Berlin, 1994. [13] Yu. M. Meshkova and T. A. Suslina, Homogenization of initial boundary-value problem for parabolic systems: operator error estimates, Algebra i Analiz 29(6) (2017), 99-158; English transl.: St. Petersburg Math. J. 29(6) (2018), 935-978. https://arxiv.org/pdf/1801.05035.pdf [14] Yu. M. Meshkova and T. A. Suslina, Homogenization of initial boundary value problems for parabolic systems with periodic coefficients, Applicable Analysis 95(8) (2016), 1736-1775. [15] P. Knabner and L. Angermann, Numerical Methods for Elliptic and Parabolic Partial Differential Equations, Texts in Applied Mathematics, Springer-Verlag, New York, 2003. [16] B. Ondami, Finite volume discretization of a class of parabolic equations with discontinuous and oscillating coefficients, Applied Mathematical Sciences 12(3) (2018), 121-135. [17] B. Ondami, Approximation of a second-order elliptic equation with discontinuous and highly oscillating coefficients by finite volume methods, Journal of Mathematics Research 8(6) (2016), 34-44. [18] B. Ondami, The effect of numerical integration on the finite element approximation of a second order elliptic equation with highly oscillating coefficients, Journal of Interpolation and Approximation in Scientific Computing 2 (2015), 128-136. [19] B. Ondami, Sur Quelques Problèmes d’Homogénéisation des Ecoulements en Milieux Poreux, Thèse de Doctorat, Université de Pau et des Pays de l’Adour, France, 2001. [20] T. A. Suslina, Homogenization of a periodic parabolic Cauchy problem, Nonlinear Equation and Spectral Theory (2007), 201-233.
|