Keywords and phrases: semi-linear diffusion equation, blow-up, continuity, numerical blow-up time, discretizations, semidiscretizations, convergence, asymptotic behavior, global existence, finite difference method.
Received: March 15, 2022; Accepted: May 5, 2022; Published: December 31, 2022
How to cite this article: N’takpe Jean Jacques, Halima Nachid and Kambire Diopina Gnowille, Asymptotic behavior of the blow-up and global existence for a parabolic equation involving a critical exponent, International Journal of Numerical Methods and Applications 23(1) (2023), 19-50. http://dx.doi.org/10.17654/0975045223002
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References:
[1] L. M. Abia, J. C. López-Marcos and J. Martinez, On the blow-up time convergence of semidiscretizations of reaction-diffusion equations, Appl. Numer. Math. 26(4) (1998), 399-414. DOI: https://doi.org/10.1016/S0168-9274(97)00105-0. [2] L. M. Abia, J. C. López-Marcos and J. Martínez, Blow-up for semidiscretizations of reaction-diffusion equations, Appl. Numer. Math. 20(1-2) (1996), 145-156. DOI: https://doi.org/10.1016/0168-9274(95)00122-0. [3] C. Bandle and H. Brunner, Blow-up in diffusion equations: a survey, J. Comput. Appl. Math. 97(1-2) (1998), 3-22. DOI: https://doi.org/10.1016/S0377-0427(98)00100-9. [4] T. K. Boni, Extinction for discretizations of some semilinear parabolic equations, C. R. Acad. Sci. Paris Ser. I Math. 333 (2001), 795-800. DOI: https://doi.org/10.1016/S0764-4442(01)02078-X. [5] P. Baras and L. Cohen, Complete blow-up after Tmax for the solution of a semilinear heat equation, J. Funct. Anal. 71 (1987), 142-174. [6] K. Deng and H. A. Levine, The role of critical exponents in blow-up theorems: the sequel, J. Math. Anal. Appl. 243 (2000), 85-126. [7] X. Fan and D. Zhao, On the space and J. Math. Appl. 263 (2001), 424-446. [8] R. Ferreira, A. de Pablo and J. L. Vázquez, Classification of blow-up with nonlinear diffusion and localized reaction, J. Differential Equations 231 (2006), 195-211. [9] R. Ferreira, A. de Pablo, M. Pérez-Llanos and J. D. Rossi, Critical exponent for a parabolic equation with variable reaction, Proceedings of the Royal Society of Edinburgh Section A: Mathematics 142(5) (2012), 1027-1042. [10] A. Friedman, Partial Differential Equation of Parabolic Type, Prentice-Hall, Englewood Cliffs, 1969. [11] A. Friedman and A. A. Lacey, The blow-up time for solutions of nonlinear heat equations with small diffusion, SIAM J. Math. Anal. 18 (1987), 711-721. [12] H. Fujita, On the blowing up of the Cauchy problem for J. Fac. Sci. Univ. Tokyo Sect. I 13 (1966), 109-124. [13] V. A. Galaktionov and H. A. Levine, On critical Fujita exponents for heat equations with nonlinear flux conditions on the boundary, Israel J. Math. 94 (1996), 125-146. [14] V. Galaktionov and J. L. Vazquez, The problem of blow-up in nonlinear parabolic equation, current developments in PDE (Temuco, 1999), Discrete Contin. Dyn. Syst. 8(2) (2002), 399-433. DOI: https://doi.org/10.3934/dcds.2002.8.399. [15] P. Groisman and J. D. Rossi, Dependence of the blow-up time with respect to parameters and numerical approximations for a parabolic problem, Asymptot. Anal. 37 (2004), 79-91. [16] P. Groisman, J. D. Rossi and H. Zaag, On the dependence of the blow-up time with respect to the initial data in a semilinear parabolic problem, Comm. Partial Differential Equations 28 (2003), 737-744. [17] K. Hayakawa, On the nonexistence of global solutions of some semilinear parabolic equations, Proc. Japan Acad. 49 (1974), 503-525. [18] W. Huang, J. Yin and Wang, On critical Fujita exponents for the porous medium equation with a nonlinear boundary condition, J. Math. Anal. Appl. 286 (2003), 369-377. [19] S. Kaplan, On the growth of solutions of quasilinear parabolic equations, Comm. Pure Appl. Math. 16 (1963), 305-330. [20] A. A. Lacey, Mathematical analysis of thermal runaway for spatially in homogeneous reactions, SIAM J. Appl. Math. 46 (1983), 1350-1366. DOI: https://doi.org/10.1137/0140040. [21] A. A. Lacey, Diffusion models with blow-up, J. Comput. Appl. Math. 97(1-2) (1998), 39-49. DOI: https://doi.org/10.1016/S0377-0427(98)00105-8. [22] M. N. Le Roux, Semi-discretization in time of a fast diffusion equation, J. Math. Anal. Appl. 137(2) (1989), 354-370. DOI: https://doi.org/10.1016/0022-247X(89)90251-5. [23] M. N. Le Roux, Semidiscretization in time of nonlinear parabolic equations with blow-up solution, SIAM J. Numer. Anal. 131(1) (1994), 170-195. DOI: https://doi.org/10.1137/0731009. [24] H. A. Levine, The role of critical exponents in blow-up theorems, SIAM Rev. 32 (1990), 262-288. [25] H. A. Levine and P. Meier, The value of the critical exponents for reaction diffusion equations in cones, Arch. Ration. Mech. Anal. 109 (1990), 73-80. [26] N. Mizoguchi and E. Yanagida, Critical exponents in blow-up of solutions with sign changes in a semilinear parabolic equation II, J. Differential Equations 145 (1998), 295-331. [27] H. Matano and F. Merle, Classification of type I and type II behaviors for a supercritical nonlinear heat equation, J. Funct. Anal. 256(4) (2009), 992-1064. [28] P. Meier, On the critical exponents for reaction-diffusion equations, Arch. Ration. Mech. Anal. 109 (1990), 63-71. [29] F. Merle and P. Raphael, Sharp upper bound on the blow-up rate for the critical nonlinear Schrödinger equation, Geom. Funct. Anal. 13(3) (2003), 591-642. [30] F. Merle and P. Raphael, On universality of blow-up profile for L2 critical nonlinear Schrödinger equation, Invent. Math. 156(3) (2004), 565-672. [31] F. Merle and P. Raphael, The blow-up dynamic and upper bound on the blow-up rate for critical nonlinear Schrödinger equation, Ann. of Math. (2) 161(1) (2005), 157-222. [32] F. Merle and H. Zaag, Optimal estimates for blowup rate and behavior for nonlinear heat equations, Comm. Pure Appl. Math. 51(2) (1998), 139-196. [33] R. Schweyer, Type II blow-up for the four dimensional energy critical semi linear heat equation, J. Funct. Anal. 263(12) (2012), 3922-3983. [34] I. Rodnianski and J. Sterbenz, On the formation of singularities in the critical O(3) σ-model, Annals of Mathematics 172 (2010), 187-242. [35] M. A. Herrero and J. J. L. Velázquez, Explosion de solutions d’équations paraboliques semilinéaires supercritiques, C. R. Acad. Sci. Paris Sér. I Math. 319(2) (1994), 141-145. [36] T. K. Boni and Halima Nachid, Blow-up for semidiscretizations of some semilinear parabolic equations with nonlinear boundary conditions, Rev. Ivoir. Sci. Tech. 11 (2008), 61-70. [37] T. K. Boni, Halima Nachid and Nabongo Diabate, Blow-up for discretization of a localized semilinear heat equation, Analele Stiintifice Ale Univertatii 2 (2010), 387-406. DOI:10.2478/v10157-010-0028-2. [38] Halima Nachid, Quenching for semidiscretizations of a semilinear heat equation with potential and general nonlinearity, Revue d’Analyse Numérique et de Théorie de l’Approximation 2 (2011), 164-181. [39] Halima Nachid, F. N’Gohisse and N’Guessan Koffi, The phenomenon of quenching for a reaction-diffusion system with non-linear boundary conditions, J. Indian Math. Soc. (N.S.) 88(1-2) (2021), 155-175. DOI: https://doi.org/10.18311/jims/2021/26056. [40] T. Nakagawa, Blowing up on the finite difference solution to Appl. Math. Optim. 2(4) (1975), 337-350. DOI: https://doi.org/10.1007/BF01448176. [41] Y. W. Qi, The critical exponents of parabolic equation and blow-up in Proc. Roy. Soc. Edinburgh Set. A 128 (1998), 123-136. [42] Y. W. Qi and H. A. Levine, The critical exponents of degenerate parabolic systems, Z. Angew. Math. Phys. 44 (1993), 249-265. [43] F. Quirós and J. D. Rossi, Blow-up sets and Fujita type curves for a degenerate parabolic system with nonlinear boundary conditions, Indiana Univ. Math. J. 50 (2001), 629-654. [44] P. Quittner and P. Souplet, Superlinear parabolic problems, Blow-up, Global Existence and Steady States, Birkhäuser Verlag, Basel, Basel, 2007.
|