Keywords and phrases: beam equation, Crank-Nicolson scheme, dissipative numerical method, finite element methods, a-priori estimate.
Received: August 6, 2022; Accepted: September 16, 2022; Published: October 21, 2022
How to cite this article: Yapi S. A. Joresse, Bomisso G. Jean-Marc, Yoro Gozo and Touré K. Augustin, A dissipative numerical method for hybrid system with variable coefficients, International Journal of Numerical Methods and Applications 22 (2022), 41-65. http://dx.doi.org/10.17654/0975045222006
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References:
[1] P. Z. Bar-Yoseph, D. Fisher and O. Gottlieb, Spectral element methods for nonlinear spatio-temporal dynamics of an Euler-Bernoulli beam, Comput. Mech. 19 (1996), 136-151. [2] G. J. M. Bomisso, A. Touré and G. Yoro, Dissipative numerical method for a flexible Euler-Bernoulli beam with a force control in rotation and velocity rotation, Journal of Mathematics Research 9(4) (2017), 30-48. [3] S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods, 3rd ed. Springer, New York, 2008. [4] S. M. Choo, S. K. Chung and R. Kannan, Finite element Galerkin solutions for the strongly damped extensible beam equations, Korean Journal of Computational and Applied Mathematics 9(1) (2002), 27-43. [5] B. Z. Guo, On the boundary control for a hybrid system with variable coefficients, J. Optim. Theory Appl. 114 (2002), 373-395. [6] Y. S. A. Joresse, B. G. Jean-Marc, Y. Gozo and T. K. Augustin, A numerical study of a homogeneous beam with a tip mass, Adv. Math. Sci. J. 10(6) (2021), 2731-2753. [7] J. L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications, Dunod, Vol. 1, 1968. [8] Z. H. Luo, Direct strain feedback control of flexible robot arms: new theoretical and experimental results, IEEE Trans. Automat. Control 38 (1993), 1610-1621. [9] M. Miletic, Stability analysis and a dissipative FEM for an Euler-Bernoulli beam with tip body and passivity-based boundary control, Ph.D. Thesis, Vienna University of Technology, 2015. [10] B. P. Rao, Uniform stabilization of a hybrid system of elasticity, SIAM J. Control Optim. 33 (1995), 440-454. [11] R. Temam, Infinite-dimensional Dynamical Systems in Mechanics and Physics, Vol. 68 of Applied Mathematical Sciences, Springer-Verlag, New York, 1988. [12] T. Wang, A Hermite cubic immersed finite element space for beam design problems, Thesis, Blacksburg, Virginia, 2005. [13] G. Strang and G. Fix, An Analysis of the Finite Element Method, Prentice-Hall, Englewood Cliffs, N.J, 1973. [14] S. A. J. Yapi, G. Yoro, G. J. M. Bomisso and K. A. Touré, Existence and uniqueness of a hybrid system with variable coefficients, J. Nonlinear Sci. Appl. 15 (2022), 67-78.
|