Keywords and phrases: spectral dichotomy method, spectral projector, eigensubspaces, eigenvalues.
Received: August 3, 2022; Accepted: September 20, 2022; Published: October 29, 2022
How to cite this article: Seydou Traoré, Mouhamadou Dosso and Lassana Samassi, Method of spectral dichotomy of a matrix with respect to a circle or an ellipse not centered at the origin, International Journal of Numerical Methods and Applications 22 (2022), 87-115. http://dx.doi.org/10.17654/0975045222008
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References:
[1] A. Ya. Bulgakov, Generalization of a matrix Lyapunov equation, Sibirsk. Mat. Zh. 30(4) (1989), 30-39 (in Russian). [2] A. Ya. Bulgakov and S. K. Godunov, Circular dichotomy of a matrix spectrum, Siberian Math. J. 29(5) (1988), 734-744 (in Russian). [3] M. Dosso, Sur quelques algorithms d’analyse de stabilité forte de matrices symplectiques, Ph.D. Thesis, Université de Bretagne Occidentale, Ecole Doctorale SMIS, Laboratoire de Mathématiques, UFR Sciences et Techniques, 2006. [4] M. Dosso, N. Coulibaly and L. Samassi, Strong stability of symplectic matrices using a spectral dichotomy method, Far East J. Appl. Math. 79(2) (2013), 73-110. [5] S. K. Godunov, The problem of the dichotomy of the spectrum of a matrix, Sibirsk. Mat. Zh. 27(5) (1986), 24-37. [6] S. K. Godunov, Spectrum dichotomy and a stability criterion for sectorial operators, Siberian Math. J. 36(6) (1995), 1152-1158. [7] S. K. Godunov and M. Sadkane, Some new algorithms for the spectral dichotomy methods, Linear Algebra Appl. 358 (2001), 173-194. [8] S. K. Godunov and M. Sadkane, Elliptic dichotomy of a matrix spectrum, Linear Algebra Appl. 248 (1996), 205-232. [9] S. K. Godunov and M. Sadkane, Spectral analysis of symplectic matrices with application to the theory of parametric resonance, SIAM J. Matrix Anal. Appl. 28(4) (2006), 1083-1096. [10] A. N. Malyshev, Calculation of invariant subspaces of a regular linear matrix pencil, Sibirsk. Mat. Zh. 30(4) (1989), 76-86 (in Russian). [11] A. N. Malyshev, Guaranteed accuracy in spectral problems of linear algebra. I., Siberian Adv. Math. 2(1) (1992), 144-197. [12] A. N. Malyshev, Parallel algorithm for solving some spectral problems of linear algebra, Linear Algebra Appl. 188/189 (1993), 489-520. [13] A. N. Malyshev and M. Sadkane, On parabolic and elliptic spectral dichotomy, SIAM J. Matrix Anal. Appl. 18(2) (1997), 265-278. [14] Yu. M. Nechepurenko, Integral criteria for the quality of the dichotomy of a matrix spectrum by a closed contour, Mathematical Notes 78(5) (2005), 669-676; Translated from Matematicheskie Zametki 78(5) (2005), 718-726. [15] M. Sadkane and A. Touhami, On modification to the spectral dichotomy algorithm, Numer. Funct. Anal. Optim. 34(7) (2013), 791-817. [16] M. Sadkane and A. Touhami, Algorithm 918: specdicho: a MATLAB program for the spectral dichotomy of regular matrix pencils, ACM Trans. Math. Software 38(3) (2012), Art. 21, 13 pp.
|