Keywords and phrases: kinematics, calculus teaching and learning, ACODESA, semiotic representations, design research.
Received: June 8, 2022; Revised: August 16, 2022; Accepted: September 14, 2022; Published: September 24, 2022
How to cite this article: Fernando Hitt, José Luis Soto Munguía, César Fabián Romero Félix and María Teresa Dávila Araiza, Reflection on the STEM integration between concepts of kinematics and calculus, Far East Journal of Mathematical Education 23 (2022), 57-96. http://dx.doi.org/10.17654/0973563122013
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References:
[1] D. Aguilera, J. L. Lupiáñez, J. M. Vílchez-González and F. J. Perales-Palacios, In search of a long-awaited consensus on disciplinary integration in STEM education, Mathematics 9 (2021), 597. doi: 10.3390/math9060597. [2] J. F. Alvarado Sánchez and J. L. Soto Munguía, Methodology for the design of didactic sequences for secondary mathematics in a technological context, Proceedings of the 42nd Meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education, Maztlán, Mexico, 2020, pp. 1749-1764. [3] A. B. Arons, Development of Concepts of Physics: From the Rationalization of Mechanics to the First Theory of Atomic Structure, Addison-Wesley, 1965. [4] A. Arcavi and N. Hadas, Computer mediated learning: an example of an approach, International Journal of Computers for Mathematics Learning 5(1) (2000), 25-45. [5] F. Arzarello, G. Pezzi and O. Robutti, Modelling body motion: an approach to functions using measure instruments, Modelling and Applications in Mathematics Education, W. Blum, P. L. Galbraith, H.-W. Henn and M. Niss, eds., Springer, New York, NY, 2007, pp. 129-136. [6] W. Blum, P. L. Galbraith, H.-W. Henn and M. Niss, Modelling and Applications in Mathematics Education, Springer, New York, 2007. [7] B. Brewster and T. Miller, Missed opportunity in mathematics anxiety, International Electronic Journal of Mathematics Education 15(3) (2020), 1-12. https://doi.org/10.29333/iejme/8405. [8] M. P. Carlson, A cross-sectional investigation of the development of the function concept, Research in Collegiate Mathematics Education III (1998), 114-162. [9] M. Carlson, Physical enactment: a powerful representational tool for understanding the nature of covarying relationships, Representations and Mathematics Visualization, F. Hitt, ed., Special Issue of PME-NA and Cinvestav-IPN, Mexico, 2002, pp. 63-77. [10] M. P. Carlson, B. Madison and R. D. West, A study of students’ readiness to learn calculus, International Journal of Research in Undergraduate Mathematics Education 2015(1) (2015), 209-233. doi: 10.1007/s40753-015-0013-y. [11] M. Carlson, M. Oehrtman and N. Engelke, The precalculus concept assessment: a tool for assessing students’ reasoning abilities and understandings, Cognition and Instruction 28(2) (2010), 113-145. [12] C. Chalmers, M. L. Carter, T. Cooper and R. Nason, Implementing big ideas to enhance STEM teaching, International Journal of Science and Mathematics Education 15(1) (2017), 25-43. https://doi.org/10.1007/s10763-017-9799-1. [13] K. Chan and S. Leung, Dynamic geometry software improves mathematical achievement: systematic review and meta-analysis, Journal of Educational Computing Research 51(3) (2014), 311-325. [14] J. Clement, Misconceptions in graphing, Proceedings of the Ninth International Conference for the Psychology of Mathematics Education, Noordwijkerhout, Netherlands, Vol. 1, 1985, pp. 369-375. [15] P. Cobb, J. Confrey, A. DiSessa, R. Lehrer and L. Schauble, Design experiments in educational research, Educational Research 32 (2003), 9-13. [16] J. Confrey and A. Maloney, A theory of mathematical modelling in technological settings, Modelling and Applications in Mathematics Education, W. Blum, P. L. Galbraith, H. W. Henn and M. Niss, eds., Springer, New York, 2007, pp. 57-68. [17] A. Costé, L’oeuvre scientifique de Nicole Oresme, Bulletin de la Société Historique de Lisieux 37 (1996), 39-48. [18] D. Densmore, I. Newton and W. H. Donahue, Newton’s Principia: The Central Argument, 3rd ed., Green Lion Press, Santa Fe, 2003. [19] P. Drijvers et al., Integrating technology into mathematics education: theoretical perspectives, Mathematics Education and Technology-rethinking the Terrain, C. Hoyles and J.-B Lagrange, eds., Springer, Boston, 2009, pp. 89-132. [20] R. Duval, Graphiques et équations: l’articulation de deux registres, Annales de Didactique et Sciences Cognitives 1 (1988), 235-253. [21] R. Duval, Registres de représentation sémiotique et fonctionnement cognitif de la pensée, Annales de Didactique et de Sciences Cognitives 5 (1993), 37-65. [22] R. Duval, Sémiosis et Pensée Humaine: Registres Sémiotiques et Apprentissages Intellectuels, Peter Lang, Berne, 1995. [23] R. Duval, Understanding the Mathematical Way of Thinking - The Registers of Semiotic Representations, Springer, Cham, 2017. https://doi.org/10.1007/978-3-319-56910-9. [24] L. D. English and D. T. King, STEM learning through engineering design: fourth-grade students’ investigations in aerospace, International Journal of STEM Education 2 (2015), 14. doi: 10.1186/s40594-015-0027-7. [25] L. D. English, Advancing mathematics education research within a STEM environment, Research in Mathematics Education in Australasia 2012-2015, K. Makar, S. Dole, J. Visnovska, M. Goos, A. Bennison and K. Fry, eds., Springer Singapore, Singapore, 2016, pp. 353-371. [26] J. M. Furner and A. Gonzalez-DeHass, How do students’ mastery and performance goals relate to math anxiety? Eurasia Journal of Mathematics, Science and Technology Education 7(4) (2011), 227-242. [27] J. M. Funner and D. D. Kumar, The mathematics and science integration argument: a strand for teacher education, Eurasia Journal of Mathematics, Science and Technology Education 3(3) (2007), 185-189. [28] G. Galilei, Dialogues Concerning Two New Sciences, H. Crew and A. de Salvio (trans.), Dover Publications, New York, 1954. [29] F. M. Goldberg and J. H. Anderson, Student difficulties with graphical representations of negative values of velocity, Physics Teacher 27 (1989), 254-260. doi: 10.1119/1.2342748. [30] G. Greefrath, C. Hertleif and H. S. Siller, Mathematical modelling with digital tools-a quantitative study on mathematising with dynamic geometry software, ZDM 50 (2018), 233-244. https://doi.org/10.1007/s11858-018-0924-6. [31] J. Hamel and L. Amyotte, Calcul différentiel, Canada, Éditions du renouveau pédagogique, Saint-Laurent, 2007. [32] J. Handhika, D.-T. Istiantara and S.-W. Astuti, Using graphical presentation to reveals the student’s conception of kinematics, Journal of Physics: Conference Series 1321 (2019), 032064. doi: 10.1088/1742-6596/1321/3/03206. [33] F. Hitt, Utilisation de calculatrices symboliques dans le cadre d’une méthode d’apprentissage collaboratif, de débat scientifique et d’auto-réflexion, M. Baron, D. Guin and L. Trouche, eds., Environnements informatisés et ressources numériques pour l’apprentissage, Conception et usages, regards croisés, Paris, Hermes, 2007, pp. 65-88. [34] F. Hitt and S. Dufour, Introduction to calculus through an open-ended task in the context of speed: representations and actions by students in action, ZDM - Mathematics Education 53 (2021), 635-647, doi: 10.1007/s11858-021-01258-x. [35] F. Hitt, M. Saboya and C. Cortés, Rupture or continuity: the arithmetico-algebraic thinking as an alternative in a modelling process in a paper and pencil and technology environment, Educational Studies in Mathematics 94 (2017), 97-116. [36] P. Hockicko, B. Trpišová and J. Ondruš, Correcting students’ misconceptions about automobile braking distances and video analysis using interactive program tracker, Journal of Science Education and Technology 23(6) (2014), 763-776. [37] D. Hughes-Hallett et al., Calculus: Single and Multivariable, 6th ed., Wiley, 2013. [38] C. Janvier, Ed., Problems of Representation in the Teaching and Learning of Mathematics, Lawrence Erlbaum Associates, London, 1987. [39] T. R. Kelley and J. G. Knowles, A conceptual framework for integrated STEM education, International Journal of STEM Education 3 (2016), 1-11. Open access: doi: 10.1186/s40594-016-0046-z. [40] C. Kieran, M. Doorman and M. Ohtani, Frameworks and principles for task design, Task Design in Mathematics Education, A. Watson and M. Ohtani, eds., New ICMI Study Series, Springer, Cham, 2015, pp. 19-81. [41] M. Kline, Calculus: An Intuitive and Physical Approach, Wiley, New York, 1967. [42] J.-B. Lagrange, L’intégration d’instruments informatiques dans l’enseignement: une approche par les techniques, Educational Studies in Mathematics 43 (2000), 1-30. [43] Z. Lavicza, Integrating technology into mathematics teaching at the university level, ZDM 42(1) (2010), 105-119. [44] G. Leinhardt, O. Zaslavsky and M. K. Stein, Functions, graphs, and graphing: tasks, learning and teaching, Review of Educational Research 60 (1990), 1-64. [45] Y. I. Lyubich and L. A. Shor, Método Cinemático en Problemas Geométricos, Editorial Mir., 1978. [46] T. Martín-Páez, D. Aguilera, F. J. Perales-Palacios and J. M. Vílchez-González, What are we talking about when we talk about STEM education? a review of literature, Science Education 103 (2019), 799-822. doi: 10.1002/sce.21522. [47] K. Maaß and K. Reitz-Koncebovski, Eds., PRIMAS, promoting inquiry in mathematics and science education across Europe, Freiburg : European Union and Seventh Framework Programme, 2013. [48] L. C. McDermott, M. L. Rosenquist and E. H. van Zee, Student difficulties in connecting graphs and physics: examples from kinematics, Amer. J. Phys. 55 (1987), 503-513. doi: 10.1119/1.15104. [49] S. McKenney, N. Nieveen and J. van den Akker, Design research from a curriculum perspective, J. Van den Akker, K. Gravemeijer, S. McKenney and N. Nieveen, eds., Educational Design Research, 2006, pp. 79-102. [50] S. Monk, Students’ understanding of a function given a physical model, The Concept of Function: Aspects of Epistemology and Pedagogy, E. Dubinsky and G. Harel, eds., MAA Notes 25 (1992), 175-193. [51] N. Nieveen, S. McKenney and J. van den Akker, Educational design research: the value of variety, J. Van den Akker, K. Gravemeijer, S. McKenney and N. Nieveen, eds., Educational Design Research, 2006, pp. 163-170. [52] D. Pimm, Review of problems of representation in the teaching and learning of mathematics, Educational Studies in Mathematics 21 (1990), 91-99. [53] S. Prediger, K. Gravemeijer and J. Confrey, Design research with a focus on learning processes: an overview on achievements and challenges, ZDM Mathematics Education 47 (2015), 877-891. doi: 10.1007/s11858-015-0722-3. [54] P. Rabardel, Les Hommes et Les Technologies, Approche Cognitive Des Instruments Contemporains, Armand Colin, 1995. [55] M. Rodrigues and P. S. Carvalho, Teaching optical phenomena with tracker, Physics Education 49 (2014), 671-677. doi: 10.1088/0031-9120/49/6/671. [56] M. Sanders, Integrative STEM education: primer, The Technology Teacher 68 (2009), 20-26. [57] A. Sfard, On the dual nature of mathematical conceptions: reflections on processes and objects as different sides of the same coin, Educational Studies in Mathematics 22 (1991), 1-36. [58] N. Ch. Siregarm, R. Rosli, S. M. Maat and M. M. Capraro, The effect of science, technology, engineering and mathematics (STEM) program on students’ achievement in mathematics: a metaanalysis, International Electronic Journal of Mathematics Education 15(3) (2020), 1-12. https://doi.org/10.29333/iejme/5885. [59] L. P. Steffe and C. Ulrich, Constructivist teaching experiment, Encyclopedia of Mathematics Education, S. Lerman, ed., Springer Netherlands, Dordrecht, 2014, pp. 102-109. [60] STEM Education Coalition, Annual Report for the STEM Education Coalition, 2012. http://www.stemedcoalition.org/wp-content/uploads/2010/05/Note-2012-Annual-Report-for-the-STEM-Education-Coalition.pdf. [61] STEM Education Coalition, Action Plan EU STEM Coalition, 2016. https://ec.europa.eu/programmes/erasmus-plus/projects/eplus-project-details/# project/2016-1-NL01-KA201-022970. [62] J. Stewart, Calculus, 7th ed., Books/Cole, Belmont, CA, USA, 2012. [63] R. Sutherland and T. Rojano, Technology and Curricula in Mathematics Education, S. Lerman, ed., Encyclopedia of Mathematics Education, Dordrecht, Springer, 2014, pp. 601-605. https://doi.org/10.1007/978-94-007-4978-8_154. [64] R. Trigueros, J. M. Aguilar-Parra, I. Mercader, J. M. Fernández-Campoy and J. Carrión, Set the controls for the heart of the maths, the protective factor of resilience in the face of mathematical anxiety, Mathematics 8 (2020), 1660. https://doi.org/10.3390/math8101660. [65] L. Trouche and P. Drijvers, Handheld technology for mathematics education: flashback into the future, ZDM 42(7) (2010), 667-681. [66] J. A. Vasquez, C. I. Sneider and M. W. Comer, STEM Lesson Essentials, Grades 3-8: Integrating Science, Technology, Engineering, and Mathematics, Heinemann, Portsmouth, 2013. [67] W. Widjaja, P. Hubber and G. Aranda, Potential and challenges in integrating science and mathematics in the classroom through real-world problems: a case of implementing and interdisciplinary approach to STEM, Asia-Pacific STEM Teaching Practices, Y.-S. Hsu and Y.-F. Yeh, eds., Singapore, Springer, 2019, pp. 157-171. [68] M. Zandieh, A theoretical framework for analyzing student understanding of the concept of derivative, Research in Collegiate Mathematics Education IV (2000), 103-127.
|