Keywords and phrases: foliation, Riemannian foliation, Riemannian foliation having dense leaves, extension of foliation, foliated vector fields, structural Lie algebra of Riemannian foliation.
Received: April 17, 2022; Revised: June 4, 2022; Accepted: June 21, 2022; Published: July 7, 2022
How to cite this article: Cyrille Dadi, Dense leaf Riemannian foliation admitting a Lie extension on a compact connected manifold, JP Journal of Geometry and Topology 27 (2022), 49-66. http://dx.doi.org/10.17654/0972415X22004
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References:
[1] R. Almeida and P. Molino, Flot riemanniens sur les 4-variétés compactes, Tohoku Math. J. (2) 38(2) (1986), 313-326 (in French). [2] Y. Carrière, Flots riemanniens, Structures transverses des feuilletages, Astérisque 116 (1984), 31-52. [3] C. Dadi, Sur les extensions des feuilletages, Thèse unique, Université de Cocody, Abidjan, 2008. [4] C. Dadi and A. Codjia, Riemannian foliation with dense leaves on a compact manifold, Int. J. Math. Comput. Sci. 11(2) (2016), 151-172. [5] C. Dadi and A. Codjia, Foliated fields of an extension of a Lie G-foliation having dense leaves on a compact manifold, Far East J. Math. Sci. (FJMS) 107(2) (2018), 357-385. [6] C. Dadi and H. Diallo, Extension d’un feuilletage de Lie minimal d’une variété compacte, Afrika Mat. (3) 18 (2007), 34-45 (in French). [7] A. El Kacimi Alaoui, G. Guasp and M. Nicolau, On deformations of transversely homogeneous foliations, Prépublication, UAB, 4, 1999. [8] E. Fédida, Sur l’existence des feuilletages de Lie, C. R. Acad. Sci. Paris Sér. A 278 (1974), 835-837 (in French). [9] C. Godbillon, Feuilletage, Etude géométriques I, Publ. IRMA, Strasbourg, 1985. [10] P. Molino, Riemannian Foliations, Birkhäuser, 1988. [11] T. Masson, Géométrie différentielle, groupes et algèbres de Lie, fibrés et connexions, Laboratoire de Physique Théorique, Université Paris XI, Bâtiment 210, 91405 Orsay Cedex, France, 2001. [12] B. Reinhart, Foliated manifold with bundle-like metrics, Ann. of Math. 69 (1959), 119-132.
|