Keywords and phrases: chemotaxis, parabolic-parabolic Keller-Segel model, flux limiters, moving grid.
Received: January 27, 2022; Accepted: March 11, 2022; Published: May 21, 2022
How to cite this article: Ouédraogo Mamadou, Lamien Kassiénou and Somé Longin, Moving grid method with flux limiters for numerical solution of parabolic-parabolic Keller-Segel chemotaxis model, International Journal of Numerical Methods and Applications 21 (2022), 17-36. http://dx.doi.org/10.17654/0975045222002
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References:
[1] Elena Floris, On theoretical and numerical properties of solutions to a Keller-Segel system, Università degli Studi di Cagliari, 2018. [2] Z. A. Wang, On chemotaxis models with cell population interactions, Math. Model. Nat. Phenom. 5(3) (2010), 173-190. [3] Ali R. Soheili and S. Salahshour, Moving mesh method with local time step refinement for blow-up problems, Appl. Math. Comput. 195 (2008), 76-85. [4] R. Kelling, J. Bickel, U. Nieken and A. Zegeling, An adaptive moving grid method for solving convection dominated transport equations in chemical engineering, Computers and Chemical Engineering 71 (2014), 467-477. [5] Shengtai Li and Linda Petzold, Moving mesh methods with up winding schemes for time-dependent PDEs, J. Comput. Phys. 131 (1997), 368-377. [6] A. Vande Wouwer, P. Saucez, W. E. Schiesser and S. Thompson, A MATLAB implementation of upwind finite differences and adaptive grids in the method of lines, J. Comput. Appl. Math. 183 (2005), 245-258. [7] Sangaré Boureima, Finite differences method and adaptive grids in the method of lines for partial differential equation, IJRRAS 23(2) (2015), 81-99. [8] Ouédraogo Mamadou, Somé Longin and Lamien Kassiénou, Using some flux limiters methods to solve three test problems, Far East Journal of Applied Mathematics 93(2) (2015), 83-108. [9] Milica Tomasevic, On a probabilistic interpretation of the Keller-Segel parabolic-parabolic equations, Thesis, Université Côte d’Azur France, 2018. [10] K. Osaki and A. Yagi, Finite dimensional attractor for one-dimensional Keller-Segel equations, Funkcialaj Ekvacioj. 44(3) (2001), 441-470. [11] Hui Huang and Jinniao Qiu, The microscopic derivation and well-posedness of the stochastic Keller-Segel equation, J. Nonlinear Sci. 31(1) (2020), 1-3. [12] F. S. Gokhan, G.W. Griffiths and W. E. Schiesser, Method of lines solution to the transient SBS equations for nanosecond Stokes pulses, J. Europ. Opt. Soc. Rap. Public. 8 (2013), 5-6. [13] Truong B. Nguyen, Efficient numerical methods for chemotaxis and plasma modulation instability studies, Thesis, Wright State University, 2019.
|