Keywords and phrases: Bayesian modelling, linear regression, rstanarm.
Received: January 6, 2022; Accepted: January 14, 2022; Published: January 28, 2022
How to cite this article: S. Mythreyi Koppur and Dr. B. Senthilkumar, A Bayesian regression modelling on investment advisory using rstanarm, Advances in Probability, Stochastic Processes and Applied Statistics 1 (2022), 13-25. DOI: 10.17654/PAS2022002
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References: [1] C. Muth, Z. Oravecz and J. Gabry, User-friendly Bayesian regression modeling: a tutorial with rstanarm and shinystan, Quantitative Methods for Psychology 14(2) (2018), 99-119. [2] O. O. Aalen, A linear regression model for the analysis of life times, Statistics in Medicine 8(8) (1989), 907-925. [3] M. A. Poole and P. N. O’Farrell, The assumptions of the linear regression model, Transactions of the Institute of British Geographers, 1971, pp. 145-158. [4] W. Yao and L. Li, A new regression model: modal linear regression, Scandinavian Journal of Statistics 41(3) (2014), 656-671. [5] A. S. Goldberger, Best linear unbiased prediction in the generalized linear regression model, J. Amer. Statist. Assoc. 57(298) (1962), 369-375. [6] W. Krämer and H. Sonnberger, The Linear Regression Model under Test, Springer Science & Business Media, 2012. [7] Y. A. Ritov, Estimation in a linear regression model with censored data, Ann. Statist. 18(1) (1990), 303-328. [8] T. Minka, Bayesian linear regression, Technical Report, MIT, 2000. [9] A. F. Smith, A general Bayesian linear model, Journal of the Royal Statistical Society: Series B (Methodological) 35(1) (1973), 67-75. [10] S. D. Permai and H. Tanty, Linear regression model using Bayesian approach for energy performance of residential building, Procedia Computer Science 135 (2018), 671-677. [11] D. Kong, J. Zhu, C. Duan, L. Lu and D. Chen, Bayesian linear regression for surface roughness prediction, Mechanical Systems and Signal Processing 142 (2020), 106770. DOI: 10.1016/j.ymssp.2020.106770. [12] P. C. Bürkner, brms: an R package for Bayesian multilevel models using stan, Journal of Statistical Software 80(1) (2017), 1-28. [13] R. McElreath, Statistical Rethinking: a Bayesian Course with Examples in R and stan, Chapman and Hall/CRC, 2018. [14] A. Gelman, J. B. Carlin, H. S. Stern and D. B. Rubin, Bayesian Data Analysis, Chapman and Hall/CRC, 1995. [15] A. Agresti, Categorical Data Analysis, Vol. 482, John Wiley & Sons, 2003. [16] J. Cohen, P. Cohen, S. G. West and L. S. Aiken, Applied Multiple Regression/Correlation Analysis for the Behavioral Sciences, Routledge, 2013. [17] F. Korner-Nievergelt, T. Roth, S. Von Felten, J. Guélat, B. Almasi and P. Korner-Nievergelt, Bayesian Data Analysis in Ecology using Linear Models with R, BUGS, and Stan, Academic Press, 2015. [18] J. Guo, J. Gabry and B. Goodrich, rstan: R interface to Stan, R Package Version 2.17.2, 2017. [19] D. Bates, M. Mächler, B. Bolker and S. Walker, Fitting Linear Mixed-effects Models Using lme4, Journal of Statistical Software 67(1) (2015), 1-48. [20] T. Sorensen, S. Hohenstein and S. Vasishth, Bayesian linear mixed models using Stan: a tutorial for psychologists, linguists, and cognitive scientists, The Quantitative Methods for Psychology 12(3) (2016), 175-200.
|