NUMERICAL CHARACTERIZATION OF THE CHANGE IN TEMPERATURE PROFILE DURING THE COMBUSTION IN A HETEROGENEOUS SOLID MEDIUM
In this article, we numerically study the change in the profile observed during the combustion in a non-homogeneous solid medium. We then characterize the determining parameters of this change and present some properties on the minimum and the maximum times of occurrence of the change of the profile of temperature.
heterogeneous solid, stationary solution, inversion of the temperature “field”, viscosity solution.
Received: December 13, 2021; Accepted: January 17, 2022; Published: January 27, 2022
How to cite this article: EDARH-BOSSOU Toyo Koffi, SAMIE Dawaïdom and TCHARIE Kokou, Numerical characterization of the change in temperature profile during the combustion in a heterogeneous solid medium, International Journal of Numerical Methods and Applications 21 (2022), 1-15. DOI: 10.17654/0975045222001
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References:
[1] SAMIE Dawaïdom, EDARH-BOSSOU Toyo Koffi and TCHARIE Kokou, Long time solutions for a coupled parabolic and Hamilton-Jacobi equations, Int. J. Adv. Appl. Math. Mech. 9(2) (2021), 1-8.[2] Toyo Koffi EDARH-BOSSOU and Dawaïdom SAMIE, Convergence of a scheme computing coupled Hamilton-Jacobi and convection-diffusion equations, International J. Numerical Methods and Applications 20(2) (2021), 135-156.[3] T. K. EDARH-BOSSOU, Mathematical modelling of the hump effect, Advances in Differential Equations and Control Processes 25(1) (2021), 99-113.[4] H. Berestycki and G. Chapuisat, Traveling fronts guided by the environment for reaction-diffusion equations, Netw. Heterog. Media 8(1) (2013), 79-114.[5] F. Hamel and Y. Sire, Spreading speeds for some reaction-diffusion equations with general initial conditions, SIAM J. Math. Anal. 42 (2010), 2872-2911.[6] M. ElSmaily, Équations de réaction-diffusion dans des milieux hétérogènes non-bornés, Ph.D. Thesis, Section 2.7, 2008.[7] H. Berestycki and F. Hamel, Generalized traveling waves for reaction-diffusion equations, Perspectives in Nonlinear Partial Differential Equations, In honor of H. Brezis, Contemp. Math. 446 (2007), 101-123.[8] O. Suys, Étude de la propagation d’un front de flamme dans un milieu solide hétérogène, thèse de Doctorat, Univ de Bordeaux I, 1996.[9] T. K. EDARH-BOSSOU, Etude de la propagation d’un front de flamme dans un milieu strié, thèse de Doctorat, Univ Claude-Bernard Lyon I-ENS Lyon, 1993.